WARNINGS

AmbiRad equipment must be installed and maintained in accordance with the relevant provisions of the Gas Safety (Installations and Use) Regulations 1998 for gas fired products. Due account should also be taken of any obligations arising from the Health and Safety at Works Act 1974 or relevant codes of practice. In addition the installation must be carried out in accordance with the current IEE wiring regulations (BS 7671), BS 6896 (Industrial & Commercial) and any other relevant British Standards and Codes of Practice by a qualified installer. All external wiring MUST comply with the current IEE wiring regulations.
1 Installation Requirements
1.1 Health & Safety
1.2 Burner Model Definitions
1.3 Heater Suspension
1.4 Clearance to Combustibles
1.5 Gas Connection & Supply Details
1.6 Electrical Connections
 1.6.1 Typical Wiring Schematic
 1.6.2 Wiring Details
1.7 Ventilation Requirements
1.8 Exhaust & Air Inlet Options
 1.8.1 Exhaust Flue Considerations
 1.8.2 Ducted Air Inlet Considerations
1.9 Vacuum Fan Details
1.10 Technical Data

2 Assembly Instructions
2.1 Tools Required
2.2 Assembly Notes
 2.2.1 Tubes
 2.2.2 Couplers
 2.2.3 Reflectors
 2.2.3.1 Main Reflectors
 2.2.3.2 Perimeter Reflectors
 2.2.3.3 Corner Reflectors
 2.2.3.4 Tee Reflectors
 2.2.4 Brackets
 2.2.4.1 Suspension Brackets
 2.2.4.2 Reflector Support Brackets
 2.2.5 Burner
 2.2.5.1 LR Burner
 2.2.5.2 Burner Head
 2.2.6 End Vent Module
 2.2.7 Exhaust Fan
2.3 Installation of End Vent/In-line Section
2.4 Installation of Radiant Tube to Tail Pipe
2.5 Installation of Main Reflectors
2.6 Installation of Corner Reflector
2.7 Installation of Tee Reflector
2.8 Final Fixture and Adjustments
2.9 Installation of Fan Exhaust System
 2.9.1 Vertical Discharge
 2.9.2 Horizontal Discharge
 2.9.3 Fan Mounting
 2.9.4 Condensate Trap
2.10 Full Breakdown of Typical System
2.11 Installation of End Vent and In-line Burners
2.12 Installation of End Vent Module (EVM)
2.13 Installation of Ducted Air Adaptors
 2.13.1 Burner Assembly Adaptor
 2.13.2 End Vent Module Adaptor
2.14 Installation of Ball Guard System
 2.14.1 Installation
 2.14.2 Blanking Shield
2.15 Installation of Slimline Decorative Grille System
 2.15.1 Standard Modular Assembly
 2.15.2 Shortened Assemblies
2.16 Installation of Blanking Shields
2.17 Installation of Undershield Deflectors
2.18 Installation of Vacuum Fan Acoustic Booth
 2.18.1 Dis-assembly
 2.18.2 Re-Assemble
 2.18.3 Suspension instructions
2.19 Fan Exhaust Silencer
 2.19.1 Assembly
 2.19.2 Horizontal Configuration
 2.19.3 Vertical Configuration
2.20 Fan Motor Muff
2.21 End Vent Silencer

3 Commissioning Instructions
3.1 Tools Required
3.2 General
3.3 Commissioning Procedure
 3.3.1 Start Up Checks
 3.3.1.8 Burner Timer Dip-switch Settings
3.4 B80/B160 & B300 Inverter Set Up
3.5 BH300 Non-Inverter Set Up
3.6 Final Commissioning
3.7 Typical Unequal Balanced System Layout

4 Servicing Instructions
4.1 Tools Required
4.2 Burner Exploded Views
4.3 Vacuum Fan
4.4 Radiant Tubes
4.5 Tube Couplers
4.6 Reflectors
4.7 Flue Condensate
4.8 Burner Electrodes
4.9 Burner Head
4.10 Filters
4.11 Combustion Chamber Viewing Window

5 Spare Parts
5.1 Required Spares List
5.2 Injector/Air Shutter Selection

6 Fault Finding Guide

7 Replacing Parts
7.1 Removal of Burner Assembly
7.2 Gas Valve Replacement
7.3 Filter Replacement
7.4 Controller Replacement
7.5 Pressure Switch Replacement
7.6 Sequence Timer Replacement
7.7 Electrode Assembly Replacement
7.8 Injector Replacement
7.9 Combustion Chamber Window Replacement

8 User and Operating Instructions
8.1 To Start Heater
8.2 To Switch Off Heater
8.3 Routine Maintenance Between Service Intervals
8.4 Frequency of Servicing
Introduction.

Welcome to the range of Nor-Ray-Vac ‘LR’ series continuous radiant tube heaters. The Nor-Ray-Vac ‘LR’ series system complies with the requirements of the European Gas Appliance Directive BS EN777-4. Local regulations may vary in the country of use and it is the installer’s responsibility to ensure that such regulations are satisfied.

All installation, assembly, commissioning and service procedures must be carried out by suitable qualified competent persons to the statutory regulations in the country of use.

When assembling, installing, commissioning and servicing is undertaken on radiant tube heaters specified in these instructions, due care and attention is required to ensure that working at height regulations are adhered to at the mounting heights specified.

PLEASE READ this document prior to installation to familiarise yourself with the components and tools you require at the various stages of assembly.

All Dimensions shown are in mm unless otherwise stated.

The manufacturer reserves the right to alter specifications without prior notice.

The Ambi-Rad Nor-Ray-Vac ‘LR’ series direct gas fired radiant heating system comprises of a continuous system with a number of burners located in series in a radiant branch, and a number of radiant branches manifolded together, linked by a tail pipe to a vacuum fan discharging the spent products of combustion to atmosphere. A system may comprise of just one burner and one vacuum fan, to multiple burners in multiple radiant branches with one or more vacuum fans.

To enable exact matching of operational needs within an area, distances between burners and ratings of the burners can vary. The unique feature of Nor-Ray-Vac ‘LR’ series is a radiant system which provides uniform heat coverage of the floor area, eliminating hot/cold spots.

The tube into which the burners are mounted and over which the reflectors are fitted and emits the maximum heat is called the radiant tube. The radiant heat emitted from the hot tube is directed downwards by reflectors. The remaining interconnecting tube is called the tail pipe and radiates with less intensity.

The operating temperatures of the tubes generally range from 200°C – 480°C max.

The action of the vacuum fan is three fold; to create a high negative pressure within the radiant tube and tail pipe so as to discharge the spent products of combustion from the system to a point outside the building being heated; to control the flow of gas and air through each burner in stoichiometric proportions; to draw carrier air into the tube system at the start of each radiant branch, in order to distribute the heat from the flame along the tube.

1. Installation Requirements.

<table>
<thead>
<tr>
<th>! WARNING</th>
<th>Isolate any electrical supply to the heater and controller before proceeding.</th>
</tr>
</thead>
</table>

1.1 Health and Safety

AmbiRad heaters must be installed in accordance with the relevant provisions of the Gas Safety (Installations and Use) Regulations 1998.

Due account should also be taken of any obligations arising from the Health and Safety at Works Act 1974 or relevant codes of practice. In addition the installation must be carried out in accordance with the current IEE wiring regulations (BS 7671), BS 6896: (Industrial & Commercial) and any other relevant British Standards and Codes of Practice by a qualified installer. Isolate all electrical supplies to the heater & controller before proceeding.

| ! WARNING | The system is assembled at high level suspended by chains from first fixings to the roof structure. (First fixings by others) |

For your own safety we recommend the use of safety boots and leather faced gloves when handling sharp or heavy items. The use of protective eye wear is also recommended.

1.2 Burner Model Definitions

NRVxxLR-EV = Nor-Ray-Vac continuous radiant tube heater only for use with branch end configurations.

NRVxxLR-IL = Nor-Ray-Vac continuous radiant tube heater only for use with in-line configurations.

xx denotes kW rating. Models available; 12, 18, 24, 32, 38 and 46.

PLEASE READ this document prior to installation to familiarise yourself with the components and tools you require at the various stages of assembly.

All Dimensions shown are in mm unless otherwise stated.

The manufacturer reserves the right to alter specifications without prior notice.

The Ambi-Rad Nor-Ray-Vac ‘LR’ series direct gas fired radiant heating system comprises of a continuous system with a number of burners located in series in a radiant branch, and a number of radiant branches manifolded together, linked by a tail pipe to a vacuum fan discharging the spent products of combustion to atmosphere. A system may comprise of just one burner and one vacuum fan, to multiple burners in multiple radiant branches with one or more vacuum fans.

To enable exact matching of operational needs within an area, distances between burners and ratings of the burners can vary. The unique feature of Nor-Ray-Vac ‘LR’ series is a radiant system which provides uniform heat coverage of the floor area, eliminating hot/cold spots.

The tube into which the burners are mounted and over which the reflectors are fitted and emits the maximum heat is called the radiant tube. The radiant heat emitted from the hot tube is directed downwards by reflectors. The remaining interconnecting tube is called the tail pipe and radiates with less intensity.

The operating temperatures of the tubes generally range from 200°C – 480°C max.

The action of the vacuum fan is three fold; to create a high negative pressure within the radiant tube and tail pipe so as to discharge the spent products of combustion from the system to a point outside the building being heated; to control the flow of gas and air through each burner in stoichiometric proportions; to draw carrier air into the tube system at the start of each radiant branch, in order to distribute the heat from the flame along the tube.

1. Installation Requirements.

<table>
<thead>
<tr>
<th>! WARNING</th>
<th>Isolate any electrical supply to the heater and controller before proceeding.</th>
</tr>
</thead>
</table>

1.1 Health and Safety

AmbiRad heaters must be installed in accordance with the relevant provisions of the Gas Safety (Installations and Use) Regulations 1998.

Due account should also be taken of any obligations arising from the Health and Safety at Works Act 1974 or relevant codes of practice. In addition the installation must be carried out in accordance with the current IEE wiring regulations (BS 7671), BS 6896: (Industrial & Commercial) and any other relevant British Standards and Codes of Practice by a qualified installer. Isolate all electrical supplies to the heater & controller before proceeding.

| ! WARNING | The system is assembled at high level suspended by chains from first fixings to the roof structure. (First fixings by others) |

For your own safety we recommend the use of safety boots and leather faced gloves when handling sharp or heavy items. The use of protective eye wear is also recommended.

1.2 Burner Model Definitions

NRVxxLR-EV = Nor-Ray-Vac continuous radiant tube heater only for use with branch end configurations.

NRVxxLR-IL = Nor-Ray-Vac continuous radiant tube heater only for use with in-line configurations.

xx denotes kW rating. Models available; 12, 18, 24, 32, 38 and 46.
1.3 Heater Suspension

1.3.1 First considerations

- Clearances from combustibles must be maintained. (See figure 2)
- For ease of servicing there should be a minimum clearance distance of 500mm between the burners of the heating system and the building wall. This measurement can be reduced for perimeter type systems. (See figure 1a).
- For ease of servicing and burner removal minimum clearances should be maintained. (See figure 1b and 1c). In exceptional circumstances the burner lid may be slid diagonally for removal thus reducing the vertical distance.
- Ensure that the suspension is sufficiently flexible to allow for thermal expansion.

1.3.2 Suspending the heater - General

1.3.2.1 The first support is always positioned at the support lug suspension point on the end vent burner combustion chamber.

1.3.2.2 Subsequent supports are placed approximately 2.8m apart, including one at each combustion chamber location. This gives a maximum load per support of 24kg.

1.3.2.3 A support must always be located at a maximum distance of 2m from a tee or elbow fitting.

1.3.2.4 Except for the combustion chamber support lug suspension points, suspension support brackets are installed to support the tube section which is then covered with reflectors.

1.3.2.5 Tail pipe hangers are installed for the tube section which will be without reflectors.

If there are any doubts as to the strength or suitability of roof steelwork to which heaters are to be suspended, please refer to a Consultant, Architect or owner of the building.

Table 1. Minimum mounting heights

<table>
<thead>
<tr>
<th>Model</th>
<th>Minimum Mounting Heights (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRV12LR</td>
<td>3.0m</td>
</tr>
<tr>
<td>NRV18LR</td>
<td>3.6m</td>
</tr>
<tr>
<td>NRV24LR</td>
<td>4.0m</td>
</tr>
<tr>
<td>NRV32LR</td>
<td>4.7m</td>
</tr>
<tr>
<td>NRV38LR</td>
<td>5.3m</td>
</tr>
<tr>
<td>NRV46LR</td>
<td>6.0m</td>
</tr>
</tbody>
</table>

Figure 1.a Overall Dimensions

A - Burner Tube
B - LR Burner
C - Optional Perimeter Reflector
D - Wall
Figure 1.b Clearance for servicing - distances to walls and obstacles above.

Figure 1.c Clearance for servicing - distances to obstacles above.

E - Obstacle over burner
F - End vent module
G - Burner lid
1.4 Clearance to Combustibles.

The minimum clearances to combustible materials are given in table 2 below. These minimum distances MUST be adhered to at all times.

Figure 2 Diagram illustrating the clearance to combustibles

Distance from combustibles (distance from heat source that will produce a 50°C rise in temperature above ambient of a black surface) A Radiant tube; B Standard reflector; C Combustible material underneath; D Combustible material on side; E Combustible material above; F Perimeter reflector;

Table 2

<table>
<thead>
<tr>
<th>Burner Model</th>
<th>NRV12LR</th>
<th>NRV18LR</th>
<th>NRV24LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End vent</td>
<td>In-line</td>
<td>End vent</td>
</tr>
<tr>
<td>Below tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dim D Without undershield mm</td>
<td>1120</td>
<td>1250</td>
<td>1120</td>
</tr>
<tr>
<td>Dim D With undershield mm</td>
<td>760</td>
<td>850</td>
<td>760</td>
</tr>
<tr>
<td>Dim C Above Tube mm</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dim B Standard reflector mm</td>
<td>600</td>
<td>770</td>
<td>600</td>
</tr>
<tr>
<td>Dim A Perimeter reflector mm</td>
<td>305</td>
<td>450</td>
<td>305</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Burner Model</th>
<th>NRV32LR</th>
<th>NRV38LR</th>
<th>NRV46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End vent</td>
<td>In-line</td>
<td>End vent</td>
</tr>
<tr>
<td>Below tube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dim D Without undershield mm</td>
<td>1440</td>
<td>1700</td>
<td>1570</td>
</tr>
<tr>
<td>Dim D With undershield mm</td>
<td>760</td>
<td>850</td>
<td>785</td>
</tr>
<tr>
<td>Dim C Above Tube mm</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dim B Standard reflector mm</td>
<td>700</td>
<td>850</td>
<td>700</td>
</tr>
<tr>
<td>Dim A Perimeter reflector mm</td>
<td>305</td>
<td>510</td>
<td>305</td>
</tr>
</tbody>
</table>
1.5 Gas Connection and Supply

Take care when making a gas connection to the heater not to apply excessive turning force to the internal controls.

A flexible hose is installed to allow safe linear expansion to each burner without creating undue stress on the gas supply pipe work. It is therefore important that a tested and certified hose assembly made to ISO 10380, supplied with ½” BSP female cone seat adapters, is installed as per these instructions.

It is also important to ensure that expansion is taken up in the body of the flexible hose, and not on its attachment to the pipe work.

The cone seat adapter supplied on one end of the flexible gas hose provides a ‘swivel’ action, and must be fitted on the burner using a ½” BSP barrel nipple to provide ease of disconnection for future servicing.

The installation layout described below is the only method recommended by the Institute of Gas Engineers, the hose manufacturer, and AmbiRad and must only be carried out by a qualified/competent gas engineer.

Table 3 Gas Supply Pressures

<table>
<thead>
<tr>
<th>Gas Category</th>
<th>G20</th>
<th>G25</th>
<th>G30</th>
<th>G31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Type</td>
<td>Natural Gas</td>
<td>Natural Gas</td>
<td>Butane</td>
<td>Propane</td>
</tr>
<tr>
<td>Max Supply Pressure (mbar)</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>57.5</td>
</tr>
<tr>
<td>Min Supply Pressure (mbar)</td>
<td>17.5</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Nominal Pressure (mbar)</td>
<td>20</td>
<td>25</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>Gas Supply Connection</td>
<td>R½ ½in BSP Internal Thread</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Depending on the specific installation, the flexible gas hose may be routed to the gas cock at any of the following angles in relation to the burner:

- Vertical (fig.a)
- 45° angle (fig.b)
- 90° angle (fig.c)

Any other position in between these angles is acceptable.

Care must be taken to observe the minimum pipe bend diameter (minimum 250mm, maximum 350mm) & pipe expansion distance (minimum 30mm, maximum 70mm) as shown in fig.e.

- **Maximum bend diameter for the hose is 450mm.**
- **The correct installation as shown will allow for approx 100mm of movement due to expansion.**

The methods shown in fig.f and fig.g are unacceptable, due to undue stress on the hose & fittings.
1.6 Electrical Connections

Standard burner 16W.
Current rating 0.05 amp per burner
Fuse: external 3 amp.

Each component carrying an electrical supply must be earthed.
Supply for burners is 230V 50Hz single phase.
* Exhaust fans are three phase 415V 50Hz.
* IP54 rated Inverter panel LRU’s require a 230V single phase supply at 22A (B80/ B160) or 30A (B300)
* Standard LRU’s require a 415V three phase supply at 25A (BH300)
* refer to individual site specifications

All electrical work should be carried out to IEE standards by a competent electrician.

The electrical connection to the burner is made by means of a three pin plug-in power connector. Live, neutral and earth connections should be made via a flexible supply cable to the power connector and routed clear of the heater or tubes.

The flexible supply cables to each burner should be of 0.5mm² minimum and comply with BS 6500:2000. For fan and LRU supply, the wire size must be suitable for the current ratings as listed in Table 10.

The wires in the mains lead are coloured in accordance with the following code: Green & Yellow Earth; Blue Neutral; Brown Live

The method of connection to the electrical supply must facilitate complete isolation and should be via a fused double pole isolator having contact separation of at least 3mm on all poles and supplying the appliance only.

We recommend use of AmbiRad approved controls. Please refer to; SmartCom control manual for siting and installation details and figures 4.1 and 4.m

Where alternative controls are used, please refer to the manufactures instructions for their siting and installation details.

Figure 4.a. Typical Wiring Connections

To other in-line burners

Fused Spur

End Vent Burner

Fused Spur

230V 50Hz
Switched Supply
from Control Source

‘Power out’ from End Vent Burner to In-line Burner(s)
1.6.1 NRV LR system - Typical External Diagram

- In-line Burner
- Fused Spur
- End Vent
- Module
- 0.75mm² Screened Cable
- Sensor
- Isolator
- 230V 50Hz 13A Mains Supply
- SmartCom³ no.2 'Slave' (SC3-MZ)
- Local Relay Unit / Inverter Panel
- 4 core Armoured Cable
- Networking Cable Screened pair Beldon 9841 or equiv

IMPORTANT
Fan types B80/B160 & B300) MOTOR MUST BE WIRED IN DELTA.

* IMPORTANT
For Inverter Panels only (fan types B80/B160 & B300) MAXIMUM length of cable between Inverter and Fan is 5m.
1.6.2 Wiring Details

Figure 4.c. LR internal wiring diagram - End Vent Burner (EV)

Figure 4.d. LR internal wiring diagram - In-line Burner (IL)
Figure 4.e. LR internal wiring diagram - End Vent Burner c/w N/O or N/C volt free Lockout contacts

- MAINS INPUT
 - L3
 - L2
 - L1
- EMC FILTER
- RELAY
- FLAME SENSOR
- IGNITOR
- SOLENOID VALVE
- VALVE J.S.T.
- POWER OUT
- DELAY TIMER
- VACUUM SWITCH

Detail shows either N.O. or N.O. contacts

Figure 4.f. LR internal wiring diagram - In-line Burner c/w N/O or N/C volt free Lockout contacts

- MAINS INPUT
 - L3
 - L2
 - L1
- EMC FILTER
- RELAY
- FLAME SENSOR
- IGNITOR
- SOLENOID VALVE
- VALVE J.S.T.
- POWER OUT
- DELAY TIMER

Detail shows either N.O. or N.O. contacts
Figure 4.g. LR internal wiring diagram - End Vent Burner c/w 3 way solenoid valve

Figure 4.h. LR internal wiring diagram - End Vent Burner c/w valve & N/O or N/C VF Lockout contacts
Figure 4.j. NRV Inverter Internal Wiring Diagram for B80, B160 and B300 three phase fans

Figure 4.k. NRV Local Relay Unit Internal Wiring Diagram for BH300 three phase fans
THE LOCAL RELAY UNIT houses an inverter. This converts the 230V single-phase input into a soft-start to the motor, which extends the motor life by minimizing the start current.

SUPPLY VIA ISOLATOR

ELECTRICAL INPUT

230V 1P 22A
230V 1P 22A
230V 1P 30A

FAN TYPE

B80
B160
B300

Burners Zone A

Exhaust Fan

4-Core Armoured or Screened Cable 1.5mm²

FAN MOTOR 230V 3-Phase Supply. Motor must be wired DELTA

MOTOR INPUTS

Inverter
Local Relay Unit

SmartCom Single Zone

Sketch of connection diagram.
Figure 4.m. NRV Schematic interconnecting wiring. BH300 three phase fans controlled by SmartCom3 via three phase Local Relay panel. (single zone shown)
Figure 4.n. NRV Schematic interconnecting wiring. B80, B160 and B300 three phase fans controlled by SmartCom3 via single phase Inverter panel. Zonal BMS Lockout and VF interface.

THE LOCAL RELAY UNIT houses an inverter. This converts the 230V single-phase input into a three-phase 230V output. The inverter provides a soft start to the motor, which extends the motor life by minimising the start current.

Important Notes

- For Inverter panels only (fan types B80 / B160 & B300):
 - Maximum length of cable between inverter and fan is 5m (EMC class A building) or 10m (EMC class B building).
 - N.B. if in doubt, do not exceed 5m.

Electrical Input

- Supply via Isolator
- 230V 50Hz 1 Phase

Fan Types

- B80
- B160
- B300

Wiring

- 4-Core Armoured or Screened Cable 1.5mm²

Important Points

- The power supply is non-isolated, therefore all wiring to the control must be mains rated.
- Wiring should be kept separate from mains wiring to minimise noise pick up.
- Set within Engineers functions for remote sensor.

Notes:

- REMOTE SENSOR(s) may be placed at a max distance of 100m from the control unit, using screened 6A mains* cable.
- Note: Connection to the burners MUST be made via a 3A fused spur.
Figure 4. NRV Schematic interconnecting wiring. B80, B160 and B300 three phase fans controlled by SmartCom via inverter panel. Individual BMS burner lockout and VF interface.

THE LOCAL RELAY UNIT

- Houses an inverter. This converts the 230V single-phase input into a three-phase 230V output. The inverter provides a soft start to the motor, which extends the motor life by minimising the start current.

FAN MOTOR

- 230V 3-Phase Supply. Motor must be wired DELTA

NOTES

- Remote Sensor(s) may be placed at a max distance of 100m from the control unit, using screened 6A mains* cable. Wiring should be kept separate from mains wiring to minimise noise pickup. Set within Engineers functions for remote sensor. The power supply is non-isolated, therefore all wiring to the control must be mains rated.

IMPORTANT

- For Inverter panels only (fan types B80 / B160 & B300):
 - Maximum length of cable between inverter and fan is 5m (EMC class A building) or 10m (EMC class B building).
 - N.B. if in doubt, do not exceed 5m.

FAN TYPE

- B80
- B160
- B300

Supply via Isolator

- ELECTRICAL INPUT
 - 230V 1P 22A
 - 230V 1P 22A
 - 230V 1P 30A

FAN TYPE

- B80
- B160
- B300

4-Core Armoured or Screened Cable 1.5mm²

THE SOFTWARE FOR THE BMS MUST ONLY REQUEST A LOCKOUT CONDITION WHEN THE SYSTEM IS REQUESTING HEAT. IN ADDITION, IT SHOULD ALSO PROVIDE A 60s DELAY BEFORE INDICATING LOCKOUT. THIS IS TO ALLOW THE SOLENOID COIL TO OPERATE AFTER INITIAL SUPPLY IS CONNECTED TO THE HEATER, WHEN CALLING FOR THE HEAT VIA THE CONTROL SYSTEM AND A RE-START ATTEMPT IF NECESSARY.

- Note: If the point is not complied with the BMS will receive a false report of the burner status.

THE LOCAL RELAY UNIT

- House an inverter. This converts the 230V single-phase input into a three-phase 230V output. The inverter provides a soft start to the motor, which extends the motor life by minimising the start current.
1.7 Ventilation Requirements
Nor-Ray-Vac heaters are installed as flued appliances in accordance with the relevant national requirements in the country of installation.

In buildings having an air change rate of less than 0.5 per hour, additional ventilation is required. For detailed information, please see BS6896 section 5.2.2.2.1

Natural Ventilation
Low level ventilation openings with a free area of at least 2cm²/kW shall be provided. See BS6896 section 5.2.2.2.1.

1.8 Exhaust and Air Inlet - Options

1.8.1 Horizontal discharge

Considerations.
The vacuum fan must be located as shown in the layout drawing.
The vacuum fan must have a bottom horizontal discharge.
The fan should be fitted to the mounting platform which is fixed to the wall or building structure. Alternatively, the fan can be suspended from the roof structure, via drop rods (not supplied) and mounted on base frame. (Anti-vibration mountings are fitted between the fan and the mounting platform/base frame.

For full details of parts and installation, please refer to section 2.9.3

1.8.2 Vertical discharge
1.8.3 Ducted Air Inlet Considerations.

Heat resistant flexible tube is connected to the burner assembly ducted air adaptor and the EVM ducted air adaptor and connected to the air supply duct.

The maximum length of 100mm diameter ductwork is 2m.

Ensure that the flexible supply duct does not drape over or touch the reflector.

Ensure that the flexible ductwork is installed to allow for expansion of the heating system.

On a header duct, the main air supply header which is feeding the individual branch ducts and burner/end vent supply ducts must have a maximum pressure drop of 0.25 mbar (0.1in wg).

All joints and seams in the air supply system must be made air tight and a bird screen used at the inlet.

For full details refer to section 2.13.
1.9 Vacuum fan mounting details (Type ‘B160’ fan illustrated)

<table>
<thead>
<tr>
<th>Fan Size</th>
<th>B80</th>
<th>B160</th>
<th>B300</th>
<th>BH300</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (crs)</td>
<td>216</td>
<td>276</td>
<td>286</td>
<td>324</td>
</tr>
<tr>
<td>B</td>
<td>595</td>
<td>595</td>
<td>625</td>
<td>704</td>
</tr>
<tr>
<td>C</td>
<td>305</td>
<td>308</td>
<td>330</td>
<td>352</td>
</tr>
<tr>
<td>D</td>
<td>580</td>
<td>555</td>
<td>575</td>
<td>650</td>
</tr>
<tr>
<td>E (Ø)</td>
<td>150</td>
<td>152</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>97</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>G (Ø)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>148</td>
</tr>
<tr>
<td>H</td>
<td>295</td>
<td>318</td>
<td>340</td>
<td>380</td>
</tr>
<tr>
<td>J</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>K</td>
<td>150</td>
<td>140</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>L</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>M</td>
<td>309</td>
<td>303</td>
<td>341</td>
<td>404</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td>62</td>
<td>157</td>
<td>157</td>
</tr>
<tr>
<td>P</td>
<td>421</td>
<td>463</td>
<td>616</td>
<td>680</td>
</tr>
<tr>
<td>R (crs)</td>
<td>318</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>S (crs)</td>
<td>356</td>
<td>356</td>
<td>356</td>
<td>356</td>
</tr>
<tr>
<td>T</td>
<td>204</td>
<td>204</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>V</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>X</td>
<td>21</td>
<td>36</td>
<td>46</td>
<td>84</td>
</tr>
</tbody>
</table>
Burner Type Details

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>G20 Natural Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of Injectors</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Connection</td>
<td>½ in BSP Internal thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burner current</td>
<td>0.05 (per burner)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Voltage/Ph/Hz</td>
<td>230 volt 1 phase 50Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burner Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Category</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input (Gross)</td>
<td>kW</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Gas consum rate Nat Gas G20</td>
<td>m³/h</td>
<td>1.14</td>
<td>1.72</td>
<td>2.29</td>
<td>3.05</td>
<td>3.62</td>
</tr>
<tr>
<td>Max Inlet pressure Nat Gas G20</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Inlet Pressure Nat Gas G20</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs Nat Gas G20</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi Nat Gas G20</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d Nat Gas G20</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ws Nat Gas G20</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wi Nat Gas G20</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injector size Nat Gas G20</td>
<td>mm</td>
<td>3.6</td>
<td>4.4</td>
<td>4.9</td>
<td>5.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Injector Part No.</td>
<td></td>
<td>L100336</td>
<td>L100544</td>
<td>L100549</td>
<td>L100554</td>
<td>L100558</td>
</tr>
<tr>
<td>Air shutter size Nat Gas G20</td>
<td>mm</td>
<td>13</td>
<td>17</td>
<td>19.5</td>
<td>22.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Air shutter Part No.</td>
<td></td>
<td>L100322</td>
<td>L100321</td>
<td>L100320</td>
<td>L100314</td>
<td>L100316</td>
</tr>
<tr>
<td>G25 Natural Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Category</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input (Gross)</td>
<td>kW</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Gas consum rate Nat Gas G25</td>
<td>m³/h</td>
<td>1.33</td>
<td>1.99</td>
<td>2.66</td>
<td>3.55</td>
<td>4.21</td>
</tr>
<tr>
<td>Max Inlet pressure Nat Gas G25</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Inlet Pressure Nat Gas G25</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs Nat Gas G25</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi Nat Gas G25</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d Nat Gas G25</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ws Nat Gas G25</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wi Nat Gas G25</td>
<td>MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injector size Nat Gas G25</td>
<td>mm</td>
<td>3.7</td>
<td>4.6</td>
<td>5.2</td>
<td>5.8</td>
<td>6.3</td>
</tr>
<tr>
<td>Injector Part No.</td>
<td></td>
<td>L100537</td>
<td>L100546</td>
<td>L100552</td>
<td>L100558</td>
<td>L100563</td>
</tr>
<tr>
<td>Air shutter size Nat Gas G25</td>
<td>mm</td>
<td>13</td>
<td>17</td>
<td>19.5</td>
<td>22.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Air shutter Part No.</td>
<td></td>
<td>L100322</td>
<td>L100321</td>
<td>L100320</td>
<td>L100314</td>
<td>L100316</td>
</tr>
</tbody>
</table>
Tables 4c & d Burner Details

Burner Details

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>G30 Butane Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>Heat input (Gross) kW</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Gas consum rate Butane G30 m³/h</td>
<td>0.34</td>
<td>0.52</td>
<td>0.69</td>
<td>0.92</td>
<td>1.09</td>
<td>1.32</td>
</tr>
<tr>
<td>Max Inlet pressure Butane G30 mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Inlet Pressure Butane G30 mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs Butane G30 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125.81</td>
</tr>
<tr>
<td>Hi Butane G30 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.09</td>
</tr>
<tr>
<td>d Butane G30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.075</td>
</tr>
<tr>
<td>Ws Butane G30 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87.33</td>
</tr>
<tr>
<td>Wi Butane G30 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.58</td>
</tr>
<tr>
<td>Injector size Butane G30 mm</td>
<td>2.6</td>
<td>3.2</td>
<td>3.7</td>
<td>4.2</td>
<td>4.6</td>
<td>5.1</td>
</tr>
<tr>
<td>Injector Part No.</td>
<td>L100526</td>
<td>L100532</td>
<td>L100537</td>
<td>L100542</td>
<td>L100546</td>
<td>L100551</td>
</tr>
<tr>
<td>Air shutter size Butane G30 mm</td>
<td>13</td>
<td>17</td>
<td>19.5</td>
<td>22.0</td>
<td>24.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Air shutter Part No.</td>
<td>L100322</td>
<td>L100321</td>
<td>L100320</td>
<td>L100314</td>
<td>L100316</td>
<td>L100318</td>
</tr>
<tr>
<td>G31 Propane Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>Heat input (Gross) kW</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Gas consum rate Propane G31 m³/h</td>
<td>0.45</td>
<td>0.68</td>
<td>0.90</td>
<td>1.21</td>
<td>1.43</td>
<td>1.73</td>
</tr>
<tr>
<td>Max Inlet pressure Propane G31 mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.5</td>
</tr>
<tr>
<td>Min Inlet Pressure Propane G31 mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Hs Propane G31 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95.65</td>
</tr>
<tr>
<td>Hi Propane G31 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88.00</td>
</tr>
<tr>
<td>d Propane G31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.55</td>
</tr>
<tr>
<td>Ws Propane G31 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76.84</td>
</tr>
<tr>
<td>Wi Propane G31 MJ/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.69</td>
</tr>
<tr>
<td>Injector size Propane G31 mm</td>
<td>2.9</td>
<td>3.5</td>
<td>4.0</td>
<td>4.4</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Injector Part No.</td>
<td>L100529</td>
<td>L100535</td>
<td>L100540</td>
<td>L100544</td>
<td>L100548</td>
<td>L100552</td>
</tr>
<tr>
<td>Air shutter size Propane G31 mm</td>
<td>13</td>
<td>17</td>
<td>19.5</td>
<td>22.0</td>
<td>24.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Air shutter Part No.</td>
<td>L100322</td>
<td>L100321</td>
<td>L100320</td>
<td>L100314</td>
<td>L100316</td>
<td>L100318</td>
</tr>
</tbody>
</table>

Hs = Gross CV
Hi = Net CV
Ws = Wobble number on gross CV
Wi = Wobble number on net CV
d = specific density
Reference gas conditions = dry, 15ºC 1013 mbar
Table 5. Heater Details

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min distance between burners (m)</td>
<td>5.2</td>
<td>7.4</td>
<td>9.4</td>
<td>14</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Max distance between burners (m)</td>
<td>7.2</td>
<td>10.2</td>
<td>13.1</td>
<td>18</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Min distance between burner and fitting (m)</td>
<td>3.6</td>
<td>3.6</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Max tube temp (°C)</td>
<td>450</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min mounting height (m)</td>
<td>3.0</td>
<td>3.6</td>
<td>4.0</td>
<td>4.7</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Max burners per branch</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 6. End Vent Module (EVM)

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>End vent setting (hot) - Multi burner systems (mbar)</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>End vent setting (hot) - SINGLE End Vent burners only (mbar)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>7.5</td>
<td>8.25</td>
<td>9.25</td>
</tr>
<tr>
<td>End vent setting (hot) - THREE burners in a branch (mbar)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>5.6</td>
</tr>
<tr>
<td>End Vent orifice diameter (mm)</td>
<td>14.5</td>
<td>16</td>
<td>24</td>
<td>27</td>
<td>32</td>
<td>n/a</td>
</tr>
<tr>
<td>End Vent orifice Part No.</td>
<td>L104102</td>
<td>L104101</td>
<td>L104100</td>
<td>L104093</td>
<td>L104092</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 7. Burner Dip-switch position

<table>
<thead>
<tr>
<th>Burner Number (within each radiant branch - lowest number closest to fan)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

To set dip-switch slide the white switch toward the numbers (1-4)

Table 8. Noise Data

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise level @ 3m below In-Line BURNER (db(A))</td>
<td>46</td>
<td>47</td>
<td>47</td>
<td>48</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>NR±2</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>42</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>Noise level @ 3m below EVM Burner (db(A))</td>
<td>46</td>
<td>48</td>
<td>48</td>
<td>52</td>
<td>55</td>
<td>58</td>
</tr>
<tr>
<td>NR±2</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>46</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>Noise level @ 3m below EVM with silencer (db(A))</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>NR±2</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>42</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>Noise level @ 3m below EVM Burner with Ducted Air (db(A))</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
</tr>
<tr>
<td>NR±2</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
<td>tba</td>
</tr>
</tbody>
</table>
Table 9. Fan Details

<table>
<thead>
<tr>
<th>Fan Size</th>
<th>B80</th>
<th>B160</th>
<th>B300</th>
<th>BH300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan part number</td>
<td>201760</td>
<td>201761</td>
<td>201732</td>
<td>201763</td>
</tr>
<tr>
<td>Motor (TEE)</td>
<td>QS 80M2B H</td>
<td>QS 90S2A-40H</td>
<td>QS 90L2A H</td>
<td>QS 112M2A H</td>
</tr>
<tr>
<td>Power</td>
<td>kW</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Supply to Fan</td>
<td>V/Hz/P</td>
<td>230~50/3</td>
<td>230~50/3</td>
<td>230~50/3</td>
</tr>
<tr>
<td>Run Current</td>
<td>A</td>
<td>4.38</td>
<td>5.6</td>
<td>8.48</td>
</tr>
<tr>
<td>Start Current</td>
<td>A</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Speed</td>
<td>RPM</td>
<td>2850</td>
<td>2860</td>
<td>2480</td>
</tr>
<tr>
<td>Wired</td>
<td></td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Flow rate @ 20°C</td>
<td>m³/h</td>
<td>368</td>
<td>736</td>
<td>1380</td>
</tr>
<tr>
<td>Flow rate @ 150°C</td>
<td>m³/h</td>
<td>259</td>
<td>519</td>
<td>972</td>
</tr>
<tr>
<td>Pressure</td>
<td>mbar</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Max Operating Temp.</td>
<td>°C</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>45</td>
<td>52</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 10. Local Relay Unit

<table>
<thead>
<tr>
<th>Fan Size</th>
<th>B80</th>
<th>B160</th>
<th>B300</th>
<th>BH300</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU part number</td>
<td>900274</td>
<td>900088</td>
<td>900089</td>
<td>900282</td>
</tr>
<tr>
<td>Inverter type</td>
<td>kW</td>
<td>1.5</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Supply to Fan</td>
<td>V/Hz/P</td>
<td>230~50/1</td>
<td>230~50/1</td>
<td>230~50/1</td>
</tr>
<tr>
<td>Line Current</td>
<td>A</td>
<td>14.8</td>
<td>14.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Motor Current</td>
<td>A</td>
<td>4.2</td>
<td>5.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>A</td>
<td>22</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>s</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Deceleration Time</td>
<td>s</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 11. System Weights

<table>
<thead>
<tr>
<th>Burner Type</th>
<th>12LR</th>
<th>18LR</th>
<th>24LR</th>
<th>32LR</th>
<th>38LR</th>
<th>46LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR Burner</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>Radiant branch*</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>Radiant branch + Slimline grille*</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td>Radiant branch + Protective guard*</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>4" Mild steel tail pipe</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>4" Aluminum tail pipe</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>6" Mild steel tail pipe</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.6</td>
</tr>
<tr>
<td>6" Aluminium tail pipe</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Max / susp point @ EV position</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.2</td>
</tr>
</tbody>
</table>

* without burners or ducted air systems
2. Assembly Instructions.

PLEASE READ this section prior to assembly to familiarise yourself with the components and tools you require at the various stages of assembly. Carefully open the packaging and check the contents against the parts and check list.

The manufacturer reserves the right to alter specifications without prior notice.

2.1 Tools Required.

The following tools and equipment are advisable to complete the tasks laid out in this manual. Suitable alternative tools may be used.

- Trestles
- Leather Faced Gloves
- Pozidrive Screwdriver
- 10mm, 12mm & 13mm Spanners
- Wrench With Extension
- 13mm Socket
- Tape Measure
- 4 & 5mm Allen Keys
- Saw
- Pop Riveter & 3/16” Rivets
- Silicone Sealant & Gun

2.2 Assembly Notes.

Please read these assembly notes in conjunction with the correct assembly drawings (Sections 2.2.1 to 2.21.1)

The system is assembled at high level suspended by chains from first fixings to the roof structure. (First fixings by others)

2.2.1 Radiant Tubes

Note: on assembly, tube seams to be facing upwards.

All radiant tubes are 101mm (4”) O/D ERW steel to BS 6323:Part 5: are factory pre-painted and supplied in 5.2m lengths. These may need to be cut depending on the system drawing design.

All tubing, combustion chambers, dampers and tube fittings are connected by ‘wrap-around’ stainless steel couplers which clamp by means of two high tensile stainless steel set pins. (See section 2.2.2)
2.2.2 Couplers

The Nor-Ray-Vac Tube Coupler is a screw tightening, self aligning - positive located tubular coupler. Manufactured in a non-corrosive stainless steel it is available in both 100mm (4”) and 150mm (6”).

Two high tensile stainless steel set pins tighten to clamp the coupler onto the tube whilst a rivet provides a centralised permanent stop to give the joint equidistance.

The following procedure explains the correct method of assembly:

Before assembly, carefully loosen the two screws. Position the coupler onto the first tube ensuring that the bars are positioned uppermost.

Slide the coupler over the tube ensuring that the rivet stop has butted up to the tube end.

Using a 6mm allen key, tighten the relevant pin. DO NOT OVERTIGHTEN.

Moving between the two set pins, tighten both ensuring that equal pressure is applied to each set pin in turn.

If all steps have been followed correctly, the coupler should have aligned itself parallel to the two tubes and a slight indentation can be observed. Using the 6mm allen key, finally tighten each screw by a further quarter turn. If a power tool is used, use a torque limit setting of 6.6 lbf/ft (0.91kgf/m) must be achieved.
2.2.3 Reflectors

The radiant tube sections of the system are fitted with reflectors made of either stainless steel or aludip to direct infra-red rays downwards.

The reflectors have a unique design profile to maximise the reflected radiant heat, minimise convective loss, and maximise on rigidity.

The reflectors are overlapped and held in position by the reflector bracket assembly.

There are two styles of reflectors:

2.2.3.1 Standard Reflectors

These 2.4m long reflectors are positioned above the tube to radiate the heat downwards and are fixed to the radiant tube via a reflector bracket (see section 2.5). The combustion chamber reflector has a rectangular hole and slot, pre cut to allow for burner combustion chamber and support lug fitting.

2.2.3.2 Perimeter Reflectors

Perimeter reflectors are used when the radiant tube is mounted at the perimeter of the building. They have the same profile as standard reflectors but extended one side to direct the radiant heat away from the wall.

The perimeter combustion chamber reflectors have a cut-out for the combustion chamber turret and suspension lug at both ends so that the one reflector can be used for either left or right hand perimeter systems.

Note: when overlapping the perimeter combustion chamber reflector, extra overlap is required to cover the pre-cut holes and slot.

2.2.3 Corner Reflectors

Used where radiant tubes are joined with a 90° bend. The corner reflector comes in two pieces and is assembled on-site.

2.2.4 Brackets

There are two styles of brackets:

2.2.4.1 Suspension brackets.

Suspension brackets are made from a one piece construction and are formed to support the tube and reflector alike. The wrap around ends are aligned to hold a turnbuckle eyelet in the correct hanging position.
A perimeter suspension bracket is available which has the same profile as the standard brackets but extended one side to accommodate the perimeter reflector.

2.2.4.2 Reflector Support Bracket

Reflector Support Brackets are a two piece construction. The first half is formed to seat on top of the radiant tube and supports the reflector sides in position. The second part clamps around the bottom half of the tube and is fixed in position via a fastener.

The reflector support bracket has two functions depending on the position of the fixing screws.

1. To fix the reflector into position.
2. To allow the reflector to slide within the bracket for thermal expansion.

A perimeter reflector support bracket is available which has the same profile as the standard brackets but extended one side to accommodate the perimeter reflector.

2.2.4.2.1 Attachment of reflector bracket.

Fit the reflector bracket (B) around the tube and tighten the set pin (D) to clamp the central clip (C) to the tube.

The set pins (A) positioned at both edges of the bracket (B) are used to provide either a fixed joint or a sliding joint.

Fully tighten these screws for fixed joints.

‘Fixed Joint’ detail.

Leave a minimum 3mm gap clearance between reflector and screws for a sliding joint.

‘Sliding Joint’ detail.

The reflector overlap after each burner must be a ‘sliding joint’, to allow for thermal expansion.
The next downstream reflector overlap must be a ‘fixed joint’.

This pattern of alternate sliding and fixed joints will continue up to the next in line burner or damper assembly. A reflector support bracket must be positioned at the end vent and at the damper end of each radiant branch, plus either side of a reflector corner and reflector tee section.

These units must be ‘fixed joints’.

2.2.5 Burner

2.2.5.1 LR Burner Unit

Each burner will consist of:
A burner control housing (BCH) of chassis style with detachable pivoting lid. All control wiring to the burner head is within the BCH, which also contains a combination gas valve comprising of 2 class 2 solenoid valves, dedicated zero governor and filter, a full sequence controller and cassette air filter for primary air supply to the burner. Externally on the BCH, neon lights indicate mains on and burner on modes.

The air and gas are pre-mixed to stoichiometric proportions within the burner head assembly, prior to being admitted to the point of combustion.

Ignition is by an electric arc forward of the face of the burner head on to the main frame.

2.2.5.2 Burner Head

A burner head assembly of lightweight cast aluminium construction, a ceramic style burner head insert, maintained in position by the flame retention grid. The casting assembly also accommodates the gas jet, air shutter and mixing chamber.

2.2.6 End Vent Module (EVM)

At the start of each radiant branch an end vent module is connected to the rear of the first combustion chamber. The end vent module externally maintains the lines of the reflector profile.

To comply with European standards that state air flow must be proven in each radiant branch, the end vent burner incorporates an air pressure switch. The end vent module incorporates the flow sensing pipework carrier air orifice plate and optional silencer box to reduce noise levels.

2.2.7 Vacuum fans

A low noise robust steel plate fabricated centrifugal fan coated with heat and corrosion resistant paint, capable of a static pressure of either 29 mbar or 45 mbar at 20°C and directly coupled to a totally enclosed motor to be fitted at the end of the tube system.

The fan exhausts the products of combustion from the system discharging through an outlet flue pipe to atmosphere external to the building.

The maximum operating temperature is 200°C.

The fan motor is IP55 rated for external use.
2.3.1 locate the cut out of the combustion chamber reflector (N) over the combustion chamber turret and lug (B).

2.3.2 The first support is positioned at the suspension lug (B) on the end vent burner combustion chamber (A).

2.3.3 Suspend the end vent combustion chamber (A) by locating the speedlink (C) through the eye of the suspension lug (B), and then connect the speedlink (C) to the turnbuckle (D).

2.3.4 Subsequent supports (E) are placed approximately 2.8m apart. This gives a max load per support of 24kg.

2.3.5 Except for the combustion chamber suspension lug (B), suspension support brackets (E) are installed to support the tube section which is then covered with reflectors.

2.3.6 Connect a length of radiant tube (F) to the end vent combustion chamber (A) by use of couplings (G), ensuring it is supported by the suspension support brackets (E).

NOTES: 1. The radiant tube should be installed with the seam weld facing upwards.
2. Ensure the radiant tube is installed in the horizontal or with a slight fall away from the end vent towards the fan.

A. Combustion Chamber - L101020-SUB; B. Suspension Lug; C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB (perimeter - C110501-SUB); F. Radiant Tube Ø100 - 1040; G. Tube Coupler - C112110 (Ø100); N. Combustion Chamber Reflector - L105050.
2.3.7 Locate the cut out of the in-line combustion chamber reflector (N) over the in-line combustion chamber turret and lug.

2.3.8 Suspend the in-line combustion chamber (A) by locating the speedlink (C) through the eye of the suspension lug (B), and then connect the speedlink (C) to the turnbuckle (D).

2.3.9 Except for the in-line combustion chamber suspension lug (B), suspension support brackets (E) are installed to support the tube section which is then covered with reflectors.

2.3.10 Connect a length of radiant tube (F) to the end vent combustion chamber (A) by use of couplings (G), ensuring it is supported by the suspension support brackets (E).

NOTES:
1. The radiant tube should be installed with the seam weld facing upwards.
2. Ensure the radiant tube is installed in the horizontal or with a slight fall away from the end vent towards the fan.

2.3.11 Subsequent supports (E) are placed approximately 2.8m apart. This gives a max load per support of 24kg.

A. Combustion Chamber - L101020-SUB; B. Suspension Lug; C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB (perimeter - C110501-SUB); F. Radiant Tube Ø100 - 1040; G. Tube Coupler - C112110 (Ø100); H. 90° Bend - C112108 (black Ø100); N. Combustion Chamber Reflector - L105050.
2.4 Installation of Radiant tube to Tail Pipe

2.4.1 Tail pipe hangers (K) slung from turnbuckles (D) and Speedlinks (C) are installed to hang the manifold and tail pipe section which will be without reflectors.

2.4.2 Dampers (I) must be located as indicated in the layout drawing. The adjustment lever must be positioned to one side to allow clear access for setting.

2.4.3 Connect the radiant tube section to the tail pipe section (L) by use of a tube increaser (J) and couplings (G), as per the layout drawing.

Note: The final 12m of tail pipe prior to the vacuum fan is aluminium (M). All tube couplers on this section ONLY must be sealed with a bead of silicone sealant on each side of the coupler.

NO SEALANT ON ANY BLACK TUBE!!

Note: Ensure the tail pipe section has the correct fall (25mm in every 6m towards the fan).

C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB; G. Tube Coupler - C112110 (Ø100), C112120 (Ø150); H. 90° Bend - C112108 (black Ø100), C112109 (black Ø150), L101554 (Alum Ø150); I. Damper - C110241-SUB; J. Increaser - C112117; K. Ø150 Tail Pipe Hanger - C112015; L. Ø150 Black Tail Pipe - C112126; M. Ø150 Alum Tail Pipe - 7230-3.
2.5.1 Install the first reflector bracket (P1) behind the turret of the combustion chamber (A).

2.5.2 Install the second reflector bracket (P2) 100mm from the other end of the combustion chamber reflector (N).

2.5.3 Slide the first plain reflector (O1) through the first downstream suspension support bracket (E1), then under the combustion chamber reflector (N) and into the second reflector bracket (P2). Ensure that the reflector overlap is a minimum of 225mm.

2.5.4 The third reflector bracket (P3) is installed 100mm from the end of the first plain reflector (O1).

2.5.5 Slide the second plain reflector (O2) through the second downstream suspension support bracket (E2), then over the first plain reflector (O1) and into the third reflector bracket (P3). Ensure that the reflector overlap is a minimum of 225mm.

2.5.6 Continue this sequence, installing additional reflectors / support brackets where required until the radiant branch is complete.

A. Combustion Chamber - L101020-SUB; E. Suspension Hanger - C110500-SUB; O. Plain Reflector - L105024; P. Reflector Support Bracket - L201008-SUB;
2.6.1 The corner section must first be assembled by overlapping the right hand reflector (Q1) over the tabbed left hand reflector (Q2) and secured using a No. 8 self tapping screws into a capture nut placed on the flange of the reflector (Q2). nb Ensure that the two reflector overlaps are 225mm.

2.6.2 Position a reflector support bracket (P) at the centre of each reflector overlap.

2.6.3 If a bend connects directly with the rear of an in-line combustion chamber, a short section of plain reflector (O1) will need to be used by cutting down a standard length. NOTE: this is the only situation where a reflector is cut short, in all other situations increase of the overlap will be necessary.

A. Combustion Chamber - L101020-SUB; E. Suspension Hanger - C110500-SUB; O. Plain Reflector - L105024; P. Reflector Support Bracket - L201008-SUB; Q. Corner Reflector Assembly - L105009-SUB
2.7.1 Position the reflector with side cut-out over the ends of the two plain reflectors.

2.7.2 Position a reflector support bracket (P) at the centre of each reflector overlap and 100mm from end of last plain reflector in radiant branch.

2.7.3 At the entry to the tee section, the plain reflector (O) MUST be fitted with a reflector end cap (S).

n.b. Ensure that the reflector overlaps are a minimum of 225mm.

C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB; G. Tube Coupler - C112110 (Ø100), C112120 (Ø150); I. Damper - C110241-SUB; O. Plain Reflector - L105024; P. Reflector Support Bracket - L201008-SUB; R. Reflector with Side cut out - L105026; S. End Cap - L105043;
2.8.1 General. Ensure all reflector overlaps are a minimum of 225mm and that there is a reflector support bracket positioned in the centre of the overlap.

2.8.2 End Caps. At the end of each reflected radiant branch the last reflector must have an end cap (S) fitted.

2.8.2.1 Using the end cap (S) as a template mark the positions of the two fixing holes onto the last reflector. Drill two 5mm diameter holes through the positions marked.

2.8.2.2 Position the end cap (S) under the last reflector and secure using the two M4 set-screws provided.

2.8.3 Perimeter reflectors (Not shown) Perimeter reflectors are used when the radiant tube is mounted at the perimeter of the building. They are standard 2.4m long reflectors but with one side extended to direct the radiant heat away from the wall.

Special perimeter suspension support brackets and perimeter reflector bracket assemblies are provided and the assembly procedure is the same as above, with the exception of the perimeter combustion chamber reflectors. The perimeter combustion chamber reflectors have a cut-out for the combustion chamber turret and suspension lug at both ends so that the one reflector can be used for either left or right hand perimeter systems.

Thus, the overlap of the perimeter combustion chamber reflector with the second perimeter reflector must be such that the cut-outs are adequately covered ie. 1000mm overlap.

L. Ø150 Mild Steel Tail Pipe - C112126;
P. Reflector Support Bracket - L201008-SUB;
S. End Cap - L105043;
2.9.1.2 The vacuum fan (Y) must be located as shown in the layout drawing and must have a bottom horizontal discharge.

The fan can be fitted to the mounting platform (Xa) which is fixed to the wall or building structure.

Alternatively, the fan can be suspended from the roof structure, via drop rods (not supplied) and mounted on base frame (Xb).

2.9.1.3 The system aluminium tail pipe (M) is connected via an expansion joint (T) to the 150 mm condensate trap assembly (V) and secured by jubilee clips (U) at each end.

A gap of approximately 150mm must be maintained between the condensate trap assembly (V) and the tail pipe (M).

2.9.1.4 The condensate trap assembly (V) must be supported using a turnbuckle (D) which is connected to the eye bolt by a speedlink (C).

2.9.1.5 The condensate trap assembly (V) is connected to the 150mm diameter fan inlet connection via coupler (G).

2.9.1.1 In vertical discharge, a tee piece (W) must be fitted in the exhaust ducting with a connection to drain. Flue couplers (G) are used to connect all exhaust flue fittings.

All ducting must be sealed using silicone sealant to avoid condensate leaking to the outside of the ductwork.

Ensure that an adequate weatherproof seal such as a 'dektite' is made where the duct passes through the roof.

The flue terminal (Zb) is fitted by first applying silicone sealant around the connecting tube ends and then inserting the swaged end of the flue terminal into the 150mm diameter flue duct. The joint is secured by drilling through the tube and connector with 3 pop rivets at 12, 4 and 8 o’clock position. 3.5 mm (3/16 in) diameter pop rivets are recommended. (Not supplied by AmbiRad).

2.9.1.1 In vertical discharge, a tee piece (W) must be fitted in the exhaust ducting with a connection to drain. Flue couplers (G) are used to connect all exhaust flue fittings.

All ducting must be sealed using silicone sealant to avoid condensate leaking to the outside of the ductwork.

Ensure that an adequate weatherproof seal such as a ‘dektite’ is made where the duct passes through the roof.

The flue terminal (Zb) is fitted by first applying silicone sealant around the connecting tube ends and then inserting the swaged end of the flue terminal into the 150mm diameter flue duct. The joint is secured by drilling through the tube and connector with 3 pop rivets at 12, 4 and 8 o’clock position. 3.5 mm (3/16 in) diameter pop rivets are recommended. (Not supplied by AmbiRad).
2.9.2 The vacuum fan (Y) must be located as shown in the layout drawing and must have a bottom horizontal discharge. The fan can be fitted to the mounting platform (Xa) which is fixed to the wall or building structure. Alternatively, the fan can be suspended from the roof structure, via drop rods (not supplied) and mounted on base frame (Xb).

2.9.2.2 The system aluminium tail pipe (M) is connected via an expansion joint (T) to the 150 mm condensate trap assembly (V) and secured by jubilee clips (U) at each end. A gap of approximately 150mm must be maintained between the condensate trap assembly (V) and the tail pipe (M). The condensate trap assembly (V) must be supported using a turnbuckle (D) which is connected to the eye bolt by a speedlink (C). The condensate trap assembly (V) is connected to the 150mm diameter fan inlet connection via coupler (G).

2.9.2.3 The system aluminium tail pipe (M) is connected via an expansion joint (T) to the 150 mm condensate trap assembly (V) and secured by jubilee clips (U) at each end. A gap of approximately 150mm must be maintained between the condensate trap assembly (V) and the tail pipe (M).

All flue ducting must be sealed using silicone sealant to avoid condensate leaking to the outside of the ductwork. A non-combustible sleeve (a - not supplied by AmbiRad) must be fitted between the exhaust flue duct and the building wall.

The flue terminal (Zb) is fitted by first applying silicone sealant around the connecting tube ends and then inserting the swaged end of the flue terminal into the 150mm diameter flue duct. The joint is secured by drilling through the tube and connector with 3 pop rivets at 12, 4 and 8 o'clock position. 3.5 mm (3/16 in) diameter pop rivets are recommended. (Not supplied by AmbiRad).

2.9.2.1 The exhaust flue duct (Za) must incline downwards away from the fan to avoid condensate running back into the fan. Flue couplers (G) are used to connect all exhaust duct fittings.

The flue terminal (Zb) is fitted by first applying silicone sealant around the connecting tube ends and then inserting the swaged end of the flue terminal into the 150mm diameter flue duct. The joint is secured by drilling through the tube and connector with 3 pop rivets at 12, 4 and 8 o'clock position. 3.5 mm (3/16 in) diameter pop rivets are recommended. (Not supplied by AmbiRad).

Installation of Fan Exhaust System cont.

C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB; G. Tube Coupler - C112120 (Ø150); M. Ø150 Alum Tail Pipe - 7230-3; T. Expansion Joint - 7532; U. Jubilee Clip Ø150 - 7542; V. Condensate Trap Assembly - L101527-SUB; Xa. Fan Wall Mounting Platform - L103060; Xb. (alternate) Fan Base Frame; Y. Fan - refer table.9; Za. Ø150 Flue Pipe (1m lengths) - A791050; Zb. Flue Terminal - L101580-SUB
2.9.3 Fan Mounting

2.9.3.1 The vacuum fan (Y) must be located as shown in the layout drawing and must have a bottom horizontal discharge.

The fan should be fitted to a mounting platform (X) which is fixed to the wall or building structure. Mounting holes are pre-drilled on the vertical legs of the platform.

Locate the mounting stool of the fan into position on the platform (Xa). Ensure anti-vibration mountings are used and secure in position.

Anti-vibration mountings are supplied as a kit of parts (X1 - X5).

2.9.3.2 Alternatively, the fan can be suspended from a roof structure, via drop (not supplied) and mounted on base frame (Xb).

Locate the mounting stool of the fan into position on the frame (Xb).

Ensure anti-vibration mountings are used and secure in position.

X5 not used with base frame.

Xa. Fan Wall Mounting Platform - L103060; Xb. (alternative) Fan Base Frame; X1-5 Anti-vibration Mount Kit - L103045-SUB; Y. Fan - refer table 9;
2.9.4 Condensate Trap Assembly

The condensate trap assembly (V) is connected to the 150mm diameter fan inlet connection via a coupler.

Ensure that a 1½ in (38 mm) drain tube assembly is fitted to the connection (V1) and to the non-return valve (V3) via bends (V2).

Ensure that the non-return valve (V3 - supplied) is fitted with the flow indication arrow pointing AWAY from the trap, in the HORIZONTAL position and at a vertical distance of 670mm* for BH type fans or 520mm* for B type fans, below the condensate trap assembly.

The condensate drainage pipe (V4 - not supplied) should be run in a standard drain pipe material, e.g. polyvinyl chloride (PVC), unplasticized polyvinyl chloride (PVC-U), acrylonitrile-butadiene-styrene (ABS), polypropylene polyproene (PP) or cross-linked polyvinyl chloride (PVC-C).

Copper or copper based alloy shall not be used for condensate drains. See BS 6896.

The drain tube must be resistant against the action of flue gas condensate and suitable for operation up to a maximum temperature of 50°C.

Ensure that the drain tube is adequately supported.

All connecting drainage pipework should have a fall of at least 2.5° to the horizontal or approximately 50mm per metre of pipe run.

If the drainage pipe has a run externally, it is recommended that the pipe is insulated to protect against frost.

Preferably the condensate pipe should run and terminate internally to a soil and vent stack or a waste pipe. Alternatively, the condensate can be discharged into the rainwater system or a purpose-made soakway.

It should be noted that the connection of a condensate pipe to a drain might be subject to local building controls.

Any internal pipework should be of a diameter stated.

Any external pipework should be kept to a minimum to avoid freezing.

Damper to control the vacuum of the system during commissioning, is adjusted by rotating handle (V5) then locking with grub screw.

V. Condensate Trap Assembly - L101527-SUB; V1 - Tube Connector; V2. Drain Tube; V3. Non-return Valve; V4. Drain Tube; V5. Damper Handle
2.10 Full Breakdown of Typical System

A. Combustion Chamber - L101020-SUB; B. Suspension Lug; C. Speedlink - 6524; D. Turnbuckle - C766300-SUB; E. Suspension Hanger - C110500-SUB; F. Radiant Tube Ø100 - 1040; G. Tube Coupler - C112110 (Ø100), C112120 (Ø150); H. 90° Bend - C112108 (black Ø100), C112109 (black Ø150), L101554 (Alum Ø150); I. Damper - C110241-SUB; J. Increaser - C112117; K. Ø150 Tail Pipe Hanger - C112015; L. Ø150 Black Tail Pipe - C112126; M. Ø150 Alum Tail Pipe - 7230-3; T. Expansion Joint - 7532; U. Jubilee Clip Ø150 - 7542; V. Condensate Trap Assembly - L101527-SUB; W. Tee Piece Ø150 - M201024; X. Fan Mounting Platform - L103060; Y. Fan - refer table.9; Za. Ø150 Flue Pipe (1m lengths) - A791050; Zb. Flue Terminal - L101580-SUB
2.11 Installation of End Vent and In Line Burners

2.11.1 Each burner is marked with its rated heat input, “EV” denotes end vent burner (AA), “IL” denotes inline burner (AB). The correct burner MUST be located as indicated on the site layout drawing.

If the difference between the two types is still unclear, the end vent burner has a pressure switch fitted inside and has two air pipe connectors located in the bottom right hand corner when looking at the rear of the unit.

2.11.2 Position gasket (AC) on combustion chamber turret (A), in line with all four fixing holes.

2.11.3 Position heat shield (AD) on top of gasket (AC) in line with all four fixing holes of gasket and turret.

2.11.4 Fit each burner through heat shield (AD), gasket (AC) and turret. Square burner in line with all four fixing holes of gasket and turret.

2.11.5 Secure the burner through the heat shield (AD) and gasket (AC) to the turret using the four M6 bolts (AE) and washers (AF) provided.

2.11.6 Repeat for all other end vent and inline burners.

AA. End Vent Burner; AB. IL Burner; AC. Burner Gasket - L102032; AD. Burner Heat Shield - 200195; AE. 6mm Set Pin - 5429-1; AF. 6mm Washer - 5425
2.12 Installation of End Vent Module

2.12.1 An end vent module or ‘EVM’ (AG) is positioned at each end vent burner position.

Each end vent module must be fitted with the correct end vent orifice plate to suit the end vent burner.

An orifice or orifice plate attached inside the EVM support spinning is located on the air entry point of the EVM.

2.12.2 Slide the EVM support spinning over the end vent combustion chamber tube.

2.12.3 Ensure combustion chamber tube end butts positively against the orifice plate. Secure using the M8 set pin (AH).

2.12.4 With the EVM (AG) in position on the end of the combustion chamber:

a attach the ‘U’ shaped bundy piece (AJ) to the compression fitting labelled ‘1’

b attach the ‘L’ shaped bundy piece (AK) to the compression fitting labelled ‘2’, positioned at the rear of the end vent burner (AA).

Ensure fittings are tightened securely.
2.13.1 Fitting ducted air adaptor to burner assembly

The ducted air adaptor (AL) is fitted over the air inlet position of the burner housing lid using two M5x30 set-screws (AN).

The primary air filter (AM) will remain in place inside the housing lid (A) via the same screws.

2.13.2 Fitting ducted air adaptor to end vent module

The ducted air adaptor (AP) is fitted to the air inlet position of the EVM. To achieve this, the EVM has to be taken apart. Remove the EVM.

2.13.2.1 Unscrew the fasteners (AS) securing the EVM outer plate (AQ) and remove.

2.13.2.2 Position ducted air adaptor against inlet plate and secure using four M5 set screws (AT) washers and Nuts (AU) provided.

2.13.2.3 Reposition assembled plate onto the EVM inner plate (AR) and affix using screws (AS)

* Optional 90° elbow (AV) can be fitted to allow individual orientation.

AL. Burner Ducted Air Adaptor - L104115; AM. Filter - L102013; AN. M5x30 Set screw; AP. EVM Ducted Air Adaptor - L104122-SUB; AQ. EVM Outer Plate; AR. EVM Inner Plate; AS. EVM Fastener; AT. M5 Set Pin - 5369; AU. M5 Nut - 5350; AV. 90° Elbow - 7075-2
The Nor-Ray-Vac ballguard system consists of standard 2.44m long modules which are supported from the underside of the radiant tube. The ballguard sections are fitted in tandem along the system. Perimeter ballguards are installed in the same manor.

2.14 Installation

2.14.1 Installation

2.14.1.1 Starting at each system end vent, position the ‘U’ bolts (BB) around the radiant tube, through the clamp bridge (BC) and secure using with M8 nuts (BE). Ensure that the distance between the ‘U’ bolts is approximately 1100mm. The ‘U’ bolt assemblies should be positioned perfectly square to ensure that the ballguard module lies horizontal when fitted.

2.14.1.2 A retaining plate (BD) is positioned on the underside of the ballguard (BA) at each ‘U’ bolt assembly position and secured using M8 nuts (BE) and washers (BF).

2.14.1.3 It is necessary to cut the edge of the ballguard section (BA) at the interface with the suspension support bracket. If necessary a standard 2.44m long ballguard can be shortened by the installation engineer.

2.14.2 Blanking Shields

It may be necessary to prevent heat being directly emitted from certain points along the radiated tube. Blanking plates are available for use with ballguards in 400mm sections, which prohibit this.

2.14.2.1 Place the blanking plate (BG) inside the ball guard (BA) to cover the area concerned. Align two retaining plates (BD) on the underside of the guard. Fasten together using M8x25 pins (BH), M8 nuts (BE) and washers (BF) prior to fixing the ball guard as above.
The Slimline 'M' decorative grille system consists of standard 2.44m long modular grille assemblies which are supported from the underside of the radiant tube. The modular assemblies are fitted in tandem along the system.

2.15.1 Standard 2.44m long modular grille assemblies

2.15.1.1 Starting at each system end vent, position the 'U' bolts (BB) around the radiant tube, through the clamp bridge (BC) and secure using with M8 locknuts (BE) approximately 10mm from the ends of the threads. Ensure that the distance between 'U' bolts is 1210mm. The 'U' bolt assemblies should be positioned perfectly square to ensure that the modular grille assembly lies horizontal when fitted.

2.15.1.2 Fit 2 eggcrate grille pieces (BL) into the standard 2.44 long grille support frame (BK).

2.15.1.3 Raise the modular grille assembly (BJ) and pass the threaded ends of the three 'U' bolts through the three sets of fixing holes.

2.15.1.3 Fit the M8 dome head nuts (BM) and washers (BF) to the threaded ends of the 'U' bolts. Check that the module is secure.

A standard 2.44m long modular grille assembly can be shortened to suit the system layout and also to accommodate corner reflector sections.

2.15.2 Shortened modular grille assemblies

2.15.2.1 Carefully disconnect one end support from the standard 2.44m long grille support frame (BK).

2.15.2.2 Cut the side support to the required length, ensuring that the cut ends are square and free from burrs. Reposition the end support and mark the fixing hole centres onto the side supports. Drill 2 sets of 5mm diameter holes through the side supports and secure frame using 8mm pop rivets.

2.15.2.3 Cut grille (BL) to the required length and position into the support frame.

2.15.2.4 Ensure that the 'U' bolts are positioned onto the tube to suit the new support frame fixing positions.

2.15.2.5 The shortened modular assembly can now be fitted to the heater using the procedure as stated in 2.15.1
2.16 Installation of Blanking Shields

It may be necessary to prevent heat being directly emitted from certain points along the radiated tube. Blanking plates are available in either 1250mm or 400mm sections, which prohibit this.

2.16.1 Installation

2.16.1.1 Locate radiant tube area to be blanked. Position the 'U' bolts (BB) around the radiant tube, through the clamp bridge (BC) and secure using with M8 nuts (BE).

Ensure that the distance between the 'U' bolts is approximately 1000mm for the 1250 blanking plate or 200mm for the 400 blanking plate.

The 'U' bolt assemblies should be positioned perfectly square to ensure that the blanking plate lies horizontal when fitted.

2.16.1.2 A retaining plate (BD) is positioned on the underside of the blanking plate (BN) at each 'U' bolt assembly position and secured using M8 nuts (BE) and washers (BF).
An Undershield Deflector (BR) is positioned beneath the radiant tube, usually at the first half of the firing leg (nearest the burner), although this can be positioned at any point if being used purely as a heat deflector for clearance purposes.

The oversized munsen rings (BQ) supplied will allow the undershield deflector to move with the expansion and contraction of the radiant tube.

2.17.1 Installation

Each undershield has two slots, 25mm in length at each end of the deflector. These slots are used to position the munsen rings apart. Mark the first point of the deflector on the radiant tube. Use the undershield (or a tape measure if required) to mark the second point.

2.17.1.1 The munsen rings (BQ) are supplied assembled. Using a flat head screwdriver remove both screws retaining the two parts together.

2.17.1.2 Offer one half, then the other onto the radiant tube at the first mark with the boss facing downwards. Replace the screws and tighten.

2.17.1.3 Ensure that the distance between the munsen rings is approx 2360mm apart.

2.17.1.4 Pass an M12 set pin (BS) through a M12 washer (BU) and through the slot on the undershield and loosely attach the M12 locknut (BT). Repeat for the second set pin.

2.17.1.5 Offer the undershield deflector up to the munsen rings. Locate the set pins to the boss and tighten. Secure assembly by tightening locknut. Repeat for second munsen ring.

BQ. 100mm Munsen Rings - 6532; BR. Undershield 2440mm - 1350; BS. M12 x 50 Set Pin - 5501-1; BT. M12 Locknut - 5501

nb. Reflectors removed for clarity
The Nor-Ray-Vac Acoustic enclosure reduces the noise from the Vacuum fan where it is mounted inside the working area and noise is an issue. It is constructed of noise reducing panels assembled to form a cube. The acoustic enclosure is weatherproof and thus can be externally located.

2.18.1 Dis-assembly

The acoustic enclosure is delivered pre-assembled so some dismantling will be required to assemble the fan motor and flue.

2.18.1.1 Remove 15 off M6 bolts and washers (CD) along the lid (CA) edge as indicated and withdraw lid assembly (CA).

2.18.1.2 Remove 13 off M6 bolts and washers (CD) along the bottom edge and side as indicated.

Remove side panel (CB).

2.18.1.3 Locate fan assembly (Y) and position in correct orientation on fan stool located on base assembly (CC). Ensure anti-vibration mountings are used and secure using nuts and washers supplied.

Anti-vibration mountings are supplied as a kit of parts (X1 - X4).
2.18.2 Re-assemble

2.18.2.1 Replace side panel (CB). Refit 13 off M6 bolts and washers (CD) along the bottom edge and side as indicated.

2.18.2.1 Replace lid (CA). Refit 15 off M6 bolts and washers (CD) along the lid edge as indicated.

2.18.3 Suspension instructions for acoustic enclosure

2.18.3.1 Suspension can be made from building steelwork using 12mm diameter drop-rods (not supplied) onto each hole of the base frame.

2.18.3.2 Alternatively, the base frame can be secured to suitable platform using M12 bolts, nuts and washers.
The Nor-Ray-Vac Flue Silencer reduces the external break-out noise from the flue terminal. This is essential for systems installed adjacent to residential and educational areas. It is constructed of noise reducing baffles assembled in an enclosure.

2.19.1 Assembly

The flue silencer box has 150mm diameter spigots at either end, and can be fitted into the fan discharge flue, utilising standard 150mm diameter connectors supplied.

The flue silencer (CH) can be fitted in the horizontal or vertical sections of the flue.

2.19.2 Horizontal configuration.

2.19.2.1 Connect one side of the flue silencer (CH) to the expansion joint (T) by means of a jubilee clip (U). The other side of the flue silencer is connected to the flue via a tube coupler (G).

2.19.2.2 Support bracketing points are positioned along the length of the flue silencer box.

Dims:
(hwds) 300 x 450 x 300mm
ø150 spigots x 140 long, brackets 50mm tall.
Weight: 6.0kgs

2.19.3 Vertical configuration.

2.19.3.1 Connect the one side of the flue silencer (CH) to the flue by means of coupler (G). The other side of the flue silencer is connected to the remaining flue via a tube coupler (G).

2.19.3.2 Support bracketing points are positioned along the length of the flue silencer box.
The Nor-Ray-Vac Fan Motor Muff is ideal when the vacuum fan is mounted within a plant room or unused room to dampen down the fan motor noise. It is constructed of noise reducing panels assembled in an enclosure.

2.20 Assembly

2.20.1.1 Fit the motor muff (CJ), over the motor of the vacuum fan.

2.20.1.2 Fix the muff to the fan motor stool using 4 bolts (CK), nuts (CL) and washers (CM) as indicated.

2.20.1.3 Fix the muff to the fan back bracket using 2 bolts (CK), nuts (CL) and washers (CM) as indicated.

Dims:
(hwd) L103053 - 300 x 370 x 320mm
(hwd) L103054 - 330 x 410 x 320mm
brackets 50mm
Weight:
8.0kgs

CJ: Motor Muff - L103053 (B80/B160/B300), L103054 (BH300);
CK: M10 x 25 Set Pin - 5481; CL: M10 Nut - 5487;
CM: M10 Washer - 5480
2.21 Installation of the End Vent Silencer

The Nor-Ray-Vac End Vent Silencer - reduces the break out noise from the inrush of air into the combustion tube when installed within areas where noise is an issue. It is constructed of noise reducing panels assembled in an enclosure.

2.21.1 Assembly

2.21.1.1 Remove cover plate (AQ) of the end vent module by releasing the 2 set screws (AS).

2.21.1.2 Offer the silencer (CN), up to the cover plate of the end vent module and attach by fixing the 4 set screws (CP) and washers (CR) to the hank bushes in the end of the silencer box.

2.21.1.3 Re-attach the cover plate (AQ) to the end vent module and fix in position using the 2 set screws (AS).

Dims: (hwd) □130 x 195mm long
Weight: 4.0kgs

AQ. EVM Outer Plate; AS. EVM Fastener; CN. EVM Silencer - L104051-SUB; CP. M6 x 12mm Set Pin - 5417-1; CR. M6 Washer - 5405
3. Commissioning Instructions.

These appliances should be commissioned by a qualified engineer.

3.1 Tools Required.

The following tools and equipment are advisable to complete the tasks laid out in this manual.

- Various Pozidrive Screwdrivers
- Various Flat Head Screwdrivers
- Manometer
- Spanner Set
- Allen Key Set

Suitable alternative tools may be used.

3.2 General.

Under normal working conditions it is recommended that the Nor-Ray-Vac ‘LR’ series system is regularly maintained to ensure long life and efficient operation.

Maintenance is required only once per year.

In dusty or dirty conditions more frequent maintenance is desirable. Servicing work must be carried out by a qualified gas service engineer.

Important

When maintaining or servicing the Nor-Ray-Vac ‘LR’ series systems:
- Never rest anything, especially ladders against heating system.
- Isolate gas and electrical supplies before commencing any service work.

3.3 Commissioning Procedure

3.3.1 Start Up Checks

3.3.1.1 Check that the installation is to the design layout drawing and installed in accordance with the installation instructions.

3.3.1.2 Check installation electrically. Ensure that the vacuum fan, inverter, burners and control panel are wired correctly to diagrams provided.

3.3.1.3 Ensure that each burner is electrically disconnected at the plug/socket.

3.3.1.4 Set individual burner delay timer dip-switches (located in each burner) to required setting. Refer to section 3.3.1.8

3.3.1.5 Check gas is turned on at meter and take meter gas pressure reading.

Fit pressure manometer to the inlet pressure test point on the burner furthest from the gas supply and with all burners off observe pressure reading. Turn off gas at meter and again observe reading. If pressure falls check system for leaks.

The gas pressure at the burner inlet connection must not exceed 50 mbar (20in wg).

3.3.1.6 Start the vacuum fan.

For various controllers/BMS systems it may be necessary to adjust the set point to above room temperature.

For B80/B160 and B300 fans with an inverter panel, check that the display states “rdy” (ready)

3.3.1.7 Check for correct fan rotation.
Each burner is fitted with an adjustable burner delay timer. The timer is adjusted using dip-switches located on top of the timer casing.

The dip-switches are labelled 1, 2, 3 and 4. These numbers correspond to the burner positions within the radiant branch.

The burner located nearest to the exhaust fan in that branch is noted as Burner 1, this is the case irrespective of how many other burners are in that branch. The burner directly behind burner 1 is always noted as Burner 2, the burner directly behind Burner 2 is Burner 3 and so on finishing at the End Vent Burner.

Set the burner timer dip-switch.
For example, the timer on burner 1 is set by sliding the white dip-switch, positioned above the number 1, towards the number. The timer on burner 2 is set by sliding the white dip-switch, positioned above the number 2, towards the number.

In the event there are more than four burners in the radiant branch, set the dip-switches as below.

5 burners in a single branch:
Burner 1 - dip-switch 1
Burner 2 - dip-switch 1
Burner 3 - dip-switch 2
Burner 4 - dip-switch 3
Burner 5 - dip-switch 4
3.3.1.9 Adjust the vacuum setting

The end vent vacuum is measured by removing the protection cap on the tee piece in the air impulse line on the end vent burner and connecting a manometer.

3.4 B80/B160 and B300 fans ONLY

The use of an inverter on the standard B80, B160, B300 fan system allows the end vent suction to be adjusted by varying the low speed setting of the inverter within the local relay unit.

3.4.1 Ensure that electrical supply to the end vent modules and burners in each branch are connected.

3.4.2 Check that the fan and branch dampers are fully open and secure.

3.4.3 Ensure the controller is in a programmed ON function and above the actual room temperature.

3.4.4 After a 30s delay the fan should run and the inverter should be showing the motor frequency in the display.

3.4.5 Press the mode button 3 times until ‘COnF’ appears on the display.

3.4.6 Press the jog dial to enter. Rotate jog dial until ‘LSP’ is displayed. Press jog dial to enter.

3.4.7 Rotate jog dial to adjust frequency. Press jog dial to enter new value, causing the inverter to change its speed.

3.4.8 Adjust the frequency until each burner has lit.

Frequency is usually between 35 and 50 (Hz)

3.4.9 Press the ESC button twice to return the inverter to the ‘rdY’ display.

3.4.10 Remove power to the system and allow fan to halt.

3.4.11 Return power to system. After a 30s delay the fan should run and a red neon should have illuminated on the rear of each burner.

3.4.12 Working at the radiant branch FURTHEST AWAY from the fan, observe the ignition of the burners. An amber neon should illuminate on the rear of the burner.

3.4.13 If the dip-switches have been set correctly, the burner closest to the manifold (last on branch) should ignite first followed in order by every burner towards the end vent burner.

Note: It may be necessary to temporarily break the union at a burner in order to purge the gas pipe of air.

When the branch has been running for 30 minutes check the end vent vacuum reading.

3.4.14 Re-adjust the frequency on the inverter (if necessary) until the appropriate end vent suction is achieved, this is given in the table below.

<table>
<thead>
<tr>
<th>System</th>
<th>End vent pressure mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard multi-burner systems</td>
<td>6.25</td>
</tr>
<tr>
<td>Special considerations</td>
<td></td>
</tr>
<tr>
<td>Single 32LR End vent only</td>
<td>7.5</td>
</tr>
<tr>
<td>Single 38LR End vent only</td>
<td>8.25</td>
</tr>
<tr>
<td>Single 46LR End vent only</td>
<td>9.25</td>
</tr>
<tr>
<td>Three 46LR in a single branch</td>
<td>5.6</td>
</tr>
</tbody>
</table>
3.4.15 Proceed to the next radiant branch closer to the fan and commission in the same manner, observing the ignition sequence of the burners and amber neon’s.

3.4.16 Check the end vent vacuum reading.

3.4.17 Adjust the branch damper (if necessary) located at the end of the branch to bring the vacuum readings in line with the normal operating figure shown in the chart. Ensure that damper is locked securely after adjustment.

3.4.18 Adjust the next b radiant branch with its associated damper in the same manner, observing the ignition sequence of the burners and amber neon’s.

3.4.19 Check the end vent vacuum reading.

3.4.20 Adjust the branch damper (if necessary) located at the end of the branch to bring the vacuum readings in line with the normal operating figure shown in the chart. Ensure that damper is locked securely after adjustment.

3.4.21 Repeat for any further branches (where necessary), moving closer to the fan as each branch is completed.

The vacuum setting procedure is now complete.

3.5 BH300 fans ONLY
(and fans controlled by NRV ‘logic’ driven LRU’s with no inverter)

End vent vacuum settings are made firstly by means of adjusting the damper at the vacuum fan inlet, this brings the end vent with the lowest reading to the normal operating vacuum.

The dampers on each branch can then be adjusted to bring the vacuum readings in other branches to the normal operating figure.

Ensure that all dampers are locked securely after adjustment.

3.5.1 Ensure that each burner is electrically disconnected at the end vent module plug/socket.

3.5.2 Check vacuum fan inlet and branch dampers are fully open in the first instance and secure.

3.5.3 Ensure the controller is in a programmed ON and above the actual room temperature.

Adjustment instruction for branch damper.
1 Loosen grub screw (A).
2 Turn adjustment lever (B).
3 Position of damper blade is indicated by position of bent adjustment lever.
4 Tighten grub screw (A) to secure damper position.

The fan inlet damper is integral to the fan inlet condensate tee piece.
1 Loosen grub screw (A).
2 Turn adjustment lever (B).
3 Position of the damper blade is indicated by position of bent adjustment lever.
4 Tighten grub screw (A) to secure damper position when finished.

3.5.4 After a 30s delay the fan should run.

3.5.5 Working at the end vent burner **FURTHEST AWAY** from the fan, measure the vacuum pressure and adjust the **fan inlet damper** to obtain over 8.7 - 10 mbar (above 3.6in wg) **WHEN COLD**.
3.5.6 Remove power to the system and allow fan to halt.

3.5.7 Ensure that each burner is electrically re-connected at the end vent module plug/socket.

3.5.8 Return power to system. After a 30s delay the fan should run and a red neon should have illuminated on the rear of each burner.

3.5.9 Working once more at the radiant branch FURTHEST AWAY from the fan, observe the ignition of the burners. An amber neon should illuminate on the rear of the burner.

3.5.10 If the dip-switches have been set correctly, the burner closest to the manifold (last on branch) should ignite first followed in order by every burner towards the end vent burner.

Note: It may be necessary to temporarily break the union at a burner in order to purge the gas pipe of air.

Allow the branch to run for 30 minutes.

3.5.11 Recheck the end vent burner FURTHEST AWAY from the fan, measure the vacuum pressure. Adjust the branch damper (if necessary) to obtain the figure shown in the table below.

<table>
<thead>
<tr>
<th>System</th>
<th>End vent pressure mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard multi-burner systems</td>
<td>6.25</td>
</tr>
<tr>
<td>Special considerations</td>
<td></td>
</tr>
<tr>
<td>Single 32LR End vent only</td>
<td>7.5</td>
</tr>
<tr>
<td>Single 38LR End vent only</td>
<td>8.25</td>
</tr>
<tr>
<td>Single 46LR End vent only</td>
<td>9.25</td>
</tr>
<tr>
<td>Three 46LR in a single branch</td>
<td>5.6</td>
</tr>
</tbody>
</table>

3.5.12 Repeat for any further branches (where necessary), moving closer to the fan as each branch is completed.

The vacuum setting procedure is now complete.

3.6 Final Commissioning.

3.6.1 Check that the burner injector pressures are zero ± 0.25 mbar (±0.1in wg). Adjust if necessary.

3.6.2 Check operation of thermostat controllers a number of times, allowing the burner ignition cycle to complete each time, checking that each burner relights.

3.6.3 With all burners firing check the inlet gas pressure at the burner furthest away from the gas supply.

The minimum inlet pressure is 17.5mbar for G20 (Nat Gas), 20mbar for G25 (Nat Gas) and G31 (Propane) and 25mbar for G30 (Butane).

The difference between gas pressure at the burner, with all the burners on and all the burners off should not be more than 2.5 mbar (1in wg).

3.6.4 Take gas consumption meter readings for each separate NRV system or building heated ensuring all other loads are off.

3.6.5 After the system has reached equilibrium: take the following measurements.

a) The flue gas temperatures entering the vacuum fan. The flue gas sample point located on the vacuum fan tee is used.

b) The surface temperature of the underside of the tube at the end of each radiant branch.

c) The surface temperature of the underside of the tube at a point directly underneath each combustion chamber suspension lug.

3.6.6 Reset thermostat controllers to required setting.

3.6.7 Complete service report sheet.
System End vent Pressure mbar

<table>
<thead>
<tr>
<th>System</th>
<th>Pressure mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard systems - shown</td>
<td>6.25</td>
</tr>
<tr>
<td>Special considerations</td>
<td></td>
</tr>
<tr>
<td>Single 32LR End vent only</td>
<td>7.5</td>
</tr>
<tr>
<td>Single 38LR End vent only</td>
<td>8.25</td>
</tr>
<tr>
<td>Single 46LR End vent only</td>
<td>9.25</td>
</tr>
<tr>
<td>Three 46LR in a single branch</td>
<td>5.6</td>
</tr>
</tbody>
</table>

3.7 Typical Unequally Balanced System Layout
4. Servicing Instructions.

These appliances should be serviced annually by a competent person to ensure safe and efficient operation. In exceptional dusty or polluted conditions more frequent servicing may be required. The manufacturer offers a maintenance service. Details available on request.

4.1 Tools Required.

The following tools and equipment are advisable to complete the tasks laid out in this manual. Suitable alternative tools may be used.

- Leather Faced Gloves
- Various Pozidrive Screwdrivers
- Various Flat Head Screwdrivers
- Large Adjustable Spanners or 22, 26 & 27mm Spanners for Gas Flex.
- Spanner Set
- Allen Key set
- Soft Brush
- Allen Key set
- Various Flat Head Screwdrivers
- Various Pozidrive Screwdrivers
- Large Adjustable Spanners or 22, 26 & 27mm Spanners for Gas Flex.
- Spanner Set
- Allen Key set
- Soft Brush

4.2 Burner Exploded Views.

Figure 6.a. LR Burner Head

- Burner head casting – L100103-SUB
- Burner port insert – L100155
- Flame retention grid – L100171
- Flame retention mesh – L100177
- Flame retention plate – L100176
- Air shutter plate - see selection chart
- Burner jet - see selection chart
- Electrode assembly – L100401
- 23 ½” plug – L100202
- Set pin M4 x 6 – 5326-1

Assembly for LR12 - 18

Part assembly for LR24 - 46 ONLY
1 Control housing base plate – L102001
2 Control housing lid – L102009
3 Full sequence gas controller – 2015
4 Multi functional gas valve – C111513 plus 900041
5 Air filter – L102013
6 Burner head casting – L100103-SUB
7 Burner port insert – L100155
8 Flame retention grid – L100171
9 Air shutter plate - see selection chart
10 Burner jet - see selection chart
11 Electrode assembly – L100401
12 Mains input filter – 201292
13 Air pressure switch (EV only) – L104039
14 Bulkhead compression fitting (EV only) – L104073
15 Delay timer – L102025-SUB
16 Inline Socket (EV only) – 3123-5
17 Wiring harness – E200067
18 Red neon light – 2180
19 Amber neon light – 2175
20 Gas inlet connection pipe ½" x 4" – 2360
21 Gas outlet inlet connection pipe ¾" x 2½" – 2314-1
22 ½" x 3¼" reducing bush – 2320
23 ½" plug – L100202
24 Valve mounting bracket – L102020
25 Pressure switch bracket – L200025
26 Grommet (gas supply) – B200500
27 Grommet (13mm) – 2878
28 Burner gasket – L102032
29 Silicone gasket – L102031
30 Slide latch – L100200
31 Latch clip – L100201
32 Push clip – C110714
33 Wing nut – C111700
34 Set pin M4 x 12 – 5325
35 Set pin M4 x 10 – 5314
36 Set pin M5 x 10 – 5363
37 Set pin M4 x 6 – 5326-1
38 Washer M4 – 5322
39 Nut M4 – 5315
40 Torque Screw - 201093
41 Silicone tubing (EV only) – L100180-SUB
42 Silicone tubing (EV only) – L100181-SUB
43 Plastic tee (EV only) – L104200
44 Tee cap (EV only) – L104201

Figure 6.b. LR Burner
4.3 Vacuum fan
Inspect fan and flue ductwork for any contamination.
Inspect expansion joints for damage and replace if necessary.

4.4 Tubes
Inspect radiant tubes and fittings internally. If there is any appreciable build up of dust or deposits the tubes should be cleaned internally.
If corrosion is present replace as necessary.
Note It may be necessary to determine whether chlorinated hydrocarbons are being used by the client.

4.5 Tube couplers
Check for tightness.
Inspect for evidence of holes and cracks and replace if necessary.

4.6 Reflectors
Check for overlaps and re-adjust if necessary.
The reflectors may be cleaned with a soft cloth and detergent in water.

4.7 Condensate trap
Inspect for dirt and scale and clean if necessary.

4.8 Burner electrodes
Check ceramic visually for build up of carbon or cracks.
Check the spark distance and position of the electrodes relative to the burner head, replace if necessary (see fig.7).

4.9 Burner head
Check condition of burner head insert and flame retention grid and replace if necessary.

4.10 Filter
Replace if contaminated with dirt.

4.11 Combustion Chamber Viewing Window
Window should be clean and free from cracks.
Replace if necessary.

Re-commission system after servicing (see section.3)

Figure 7.
Burner Electrode Details

![Burner Electrode Details](image)
5. Spare Parts.

Required Spares

In order to aid troubleshooting and servicing we recommend that the components shown in this section should be stocked.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part No.</th>
<th>Item</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition Controller</td>
<td></td>
<td>2015</td>
<td>Pressure Switch</td>
<td></td>
<td>L104039</td>
</tr>
<tr>
<td>Nat Gas Valve Twin Solenoid 220/240</td>
<td></td>
<td>C111513</td>
<td>Amber Neon (Burner On)</td>
<td></td>
<td>2175</td>
</tr>
<tr>
<td>Valve Mini Harness</td>
<td></td>
<td>900041</td>
<td>Red Neon (Mains On)</td>
<td></td>
<td>2180</td>
</tr>
<tr>
<td>Mains Input EMC Filter</td>
<td></td>
<td>201292</td>
<td>Inline Burner Socket</td>
<td></td>
<td>3123-5</td>
</tr>
<tr>
<td>Ignitor Assembly</td>
<td></td>
<td>L100401</td>
<td>Inline Burner Plug</td>
<td></td>
<td>3124</td>
</tr>
<tr>
<td>HT Spark Lead</td>
<td></td>
<td>2243-1</td>
<td>Vacuum Test Nipple</td>
<td></td>
<td>L104200</td>
</tr>
<tr>
<td>Rectification Lead</td>
<td></td>
<td>2243-2</td>
<td>Burner Timer</td>
<td></td>
<td>L102026</td>
</tr>
<tr>
<td>Mains Input Cable</td>
<td></td>
<td>2125</td>
<td>Main Harness End Vent In-line</td>
<td></td>
<td>E200067 E200068</td>
</tr>
<tr>
<td>Burner Air Filter</td>
<td></td>
<td>L102013</td>
<td>Lockout Relay</td>
<td></td>
<td>2104</td>
</tr>
<tr>
<td>Webber Valve</td>
<td></td>
<td>2197</td>
<td>Lockout Relay Base</td>
<td></td>
<td>2108</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Part No.</td>
<td>Item</td>
<td>Description</td>
<td>Part No.</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Burner Gasket</td>
<td></td>
<td>L102032</td>
<td>Burner Head Assembly</td>
<td></td>
<td>L100102-SUB12-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flame Retention Grid</td>
<td>L100102-SUB</td>
</tr>
<tr>
<td>Ceramic Insert</td>
<td></td>
<td>L100155</td>
<td></td>
<td></td>
<td>L100175-SUB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L100171</td>
</tr>
<tr>
<td>Mica Window</td>
<td></td>
<td>A523500</td>
<td>Sight Glass Cover</td>
<td></td>
<td>A571202</td>
</tr>
<tr>
<td>Window Gasket</td>
<td></td>
<td>C110350</td>
<td>End Vent Module</td>
<td></td>
<td>EVM</td>
</tr>
<tr>
<td>Fan B80</td>
<td></td>
<td>201760</td>
<td>Inverter</td>
<td></td>
<td>900088</td>
</tr>
<tr>
<td>Fan B160</td>
<td></td>
<td>201761</td>
<td></td>
<td></td>
<td>900089</td>
</tr>
<tr>
<td>Fan B300</td>
<td></td>
<td>201762</td>
<td>Contactor/O'load</td>
<td></td>
<td>900088</td>
</tr>
<tr>
<td>Fan BH300</td>
<td></td>
<td>201763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100mm (4") Tube Coupler</td>
<td></td>
<td>C112110</td>
<td>Fan Expansion Joint</td>
<td></td>
<td>7532</td>
</tr>
<tr>
<td>150mm (6") Tube Coupler</td>
<td></td>
<td>C112120</td>
<td>Jubilee Clip</td>
<td></td>
<td>7542</td>
</tr>
<tr>
<td>Combustion Chamber</td>
<td></td>
<td>L101020-SUB</td>
<td>Suspension Bracket</td>
<td></td>
<td>C110500-SUB</td>
</tr>
<tr>
<td>Combustion Chamber</td>
<td></td>
<td>L105050</td>
<td>Reflector Support Bracket</td>
<td></td>
<td>L201008-SUB</td>
</tr>
<tr>
<td>Reflector</td>
<td></td>
<td>L105024</td>
<td>Speedlinks</td>
<td></td>
<td>6524</td>
</tr>
<tr>
<td>Gas</td>
<td>Burner</td>
<td>Jet Size dia mm Part number</td>
<td>Sutter Size dia mm Part number</td>
<td>EVM Orifice Plate dia mm Part number</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Natural G20</td>
<td>12</td>
<td>3.6</td>
<td>L100336</td>
<td>13 L100322</td>
<td>14.5 L104102</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.4</td>
<td>L100544</td>
<td>17 L100321</td>
<td>16 L104101</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.9</td>
<td>L100549</td>
<td>19.5 L100320</td>
<td>24 L104100</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.4</td>
<td>L100554</td>
<td>22 L100314</td>
<td>27 L104093</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>5.8</td>
<td>L100558</td>
<td>24 L100316</td>
<td>32 L104092</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>6.3</td>
<td>L100563</td>
<td>26.5 L100318</td>
<td>- -</td>
</tr>
<tr>
<td>Natural G25</td>
<td>12</td>
<td>3.7</td>
<td>L100537</td>
<td>13 L100322</td>
<td>14.5 L104102</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.6</td>
<td>L100546</td>
<td>17 L100321</td>
<td>16 L104101</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.2</td>
<td>L100552</td>
<td>19.5 L100320</td>
<td>24 L104100</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.8</td>
<td>L100558</td>
<td>22 L100314</td>
<td>27 L104093</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>6.3</td>
<td>L100563</td>
<td>24 L100316</td>
<td>32 L104092</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>6.9</td>
<td>L100569</td>
<td>26.5 L100318</td>
<td>- -</td>
</tr>
<tr>
<td>Butane G30</td>
<td>12</td>
<td>2.6</td>
<td>L100526</td>
<td>13 L100322</td>
<td>14.5 L104102</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.2</td>
<td>L100532</td>
<td>17 L100321</td>
<td>16 L104101</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.7</td>
<td>L100537</td>
<td>19.5 L100320</td>
<td>24 L104100</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.2</td>
<td>L100542</td>
<td>22 L100314</td>
<td>27 L104093</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>4.6</td>
<td>L100546</td>
<td>24 L100316</td>
<td>32 L104092</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>5.1</td>
<td>L100551</td>
<td>26.5 L100318</td>
<td>- -</td>
</tr>
<tr>
<td>Propane G31</td>
<td>12</td>
<td>2.9</td>
<td>L100529</td>
<td>13 L100322</td>
<td>14.5 L104102</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.5</td>
<td>L100535</td>
<td>17 L100321</td>
<td>16 L104101</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.0</td>
<td>L100540</td>
<td>19.5 L100320</td>
<td>24 L104100</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.4</td>
<td>L100544</td>
<td>22 L100314</td>
<td>27 L104093</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>4.8</td>
<td>L100548</td>
<td>24 L100316</td>
<td>32 L104092</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>5.2</td>
<td>L100552</td>
<td>26.5 L100318</td>
<td>- -</td>
</tr>
</tbody>
</table>
6. Fault Finding Guide

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum fan is running but there is no power at burner. Neon lights are off.</td>
<td>Thermostat is satisfied.</td>
<td>Check to see that thermostat is calling for heat.</td>
</tr>
<tr>
<td></td>
<td>No power at burner.</td>
<td>Check for 240V supply.</td>
</tr>
<tr>
<td></td>
<td>Blown fuse in supply to heater.</td>
<td>Check and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>End vent vacuum too low.</td>
<td>Vacuum at end vent should be 6.25 mbar (2.5 in wg). Check for air leaks on burner.</td>
</tr>
<tr>
<td></td>
<td>Air pressure switch on end vent burner not opening.</td>
<td>Check and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>3 way air valve (if fitted) in end vent burner not opening.</td>
<td>Check and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>No power out from end vent burner.</td>
<td>Check for loose or broken wire or faulty relay.</td>
</tr>
<tr>
<td>Red neon comes on but ignition sequence does not start and amber neon remains off.</td>
<td>Loose or broken leads to full sequence gas controller.</td>
<td>Check and repair.</td>
</tr>
<tr>
<td>Red neon comes on. Amber neon comes on for ignition period; then amber neon goes off.</td>
<td>No ignition spark.</td>
<td>Check for loose or broken high tension lead to spark electrode. Check spark gap and position for spark electrode Check ceramic is not cracked. Check for loose earth wire connection on full sequence gas controller.</td>
</tr>
<tr>
<td></td>
<td>Fault in full sequence gas controller.</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Insufficient gas supply to burner.</td>
<td>Check service cock is open and gas pressure is available at inlet to gas valve.</td>
</tr>
<tr>
<td></td>
<td>Gas solenoid valve not opening.</td>
<td>Check for loose or broken wires to the gas valve. Replace valve if necessary.</td>
</tr>
<tr>
<td></td>
<td>Injector pressure not set at zero.</td>
<td>Check and adjust.</td>
</tr>
<tr>
<td></td>
<td>Incorrect aeration.</td>
<td>Check that air shutter plate on mixing chamber is correctly positioned.</td>
</tr>
<tr>
<td>Red neon comes on. Amber neon comes on for ignition period, burner lights for a short time and then goes out. Amber neon off.</td>
<td>Flame probe faulty or lead detached.</td>
<td>Check for broken ceramic. Check for correct position of flame probe.</td>
</tr>
<tr>
<td></td>
<td>Fault in sequence gas controller.</td>
<td>Measure flame current. The minimum signal is 3μA (DC).</td>
</tr>
<tr>
<td></td>
<td>Polarity of line and neutral incorrect.</td>
<td>Check for correct polarity of the electrical supply.</td>
</tr>
<tr>
<td></td>
<td>Burner earth is poor.</td>
<td>Check and ensure burner is correctly earthed.</td>
</tr>
<tr>
<td></td>
<td>Full sequence gas controller faulty.</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Incorrect aeration.</td>
<td>Check that air shutter plate on mixing chamber is correctly positioned.</td>
</tr>
<tr>
<td>End vent vacuum too low (ie below 6.25 mbar (2.5 in wg). Check section 3, commissioning for exact vacuum details.</td>
<td>Branch damper closed or broken.</td>
<td>Open branch damper until end vent vacuum is 6.25 mbar (2.5 in wg). Replace damper if necessary.</td>
</tr>
<tr>
<td></td>
<td>Fan rotation incorrect.</td>
<td>Reverse two phase wires on 3 phase motors.</td>
</tr>
<tr>
<td></td>
<td>Fan speed wrong.</td>
<td>Check voltage at motor. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Fan impeller loose or defective.</td>
<td>Tighten or replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Restriction to fan inlet.</td>
<td>Clear restriction, repair flue duct.</td>
</tr>
<tr>
<td></td>
<td>Air leaks into system via poor joints.</td>
<td>Replace defective tube couplers gaskets or acoustic joints.</td>
</tr>
<tr>
<td></td>
<td>Insufficient fall of system towards fan allowing condensate blockage.</td>
<td>Reinstate system fail.</td>
</tr>
<tr>
<td></td>
<td>Non return valve sticking open on condensate trap assembly.</td>
<td>Clean valve or replace if damaged.</td>
</tr>
</tbody>
</table>
7. Replacing Parts.

7.1 Removal of burner assembly.

a Disconnect electrical supply at burner mains inlet connection.

b Turn-off gas supply at service cock and disconnect union.

b1 On EVM burners, remove the vacuum tubes by releasing the two compression fittings (14).

c Release the slider latches (30) from the underside of the burner base plate (1).

d Pull lid (2) apart and upwards from base (1). Lid is attached to back plate via 2 screws (34).

e Remove lid by unscrewing set pins (34) from back of base plate.

f Remove spark electrode assembly (11) (see section 7.7)

g Release and remove the four set screws (40) from the combustion chamber flange. Retain combustion chamber gasket (28).

h Lift burner clear of combustion chamber and withdraw.

i Remove the burner heat shield.

j When replacing do so in the reverse order ensuring that the gasket between the burner heat shield and combustion chamber (28) is undamaged or replaced.

k Check for gas soundness.

7.2 Removal of gas valve.

a Remove burner assembly from combustion chamber as detailed in 7.1.

b Secure burner head (6) and unscrew gas inlet pipe (21).

c Remove burner set screws (37) and valve bracket set screws (36) from burner base plate.

d Withdraw burner head and valve from base plate. Retain burner gasket for later (28).

e Secure burner head (6) and unscrew gas valve (4).

f Replace in reverse order.
7.3 Filter Replacement.

a Release the slider latches (30) from the underside of the burner base plate (1).
b Pull lid (2) apart and upwards from base (1).
c Unscrew wing nut fastener (33).
d Slide filter (5) out of location brackets.
e Replace in reverse order.

7.4 Controller Replacement

a Disconnect electrical supply.
b Release the slider latches (30) from the underside of the burner base plate.
c Pull lid (2) apart and upwards from base (1).
d Disconnect JST connection (3a).

e Disconnect ignition wire from controller (3b).
f Release three push clips (32) from controller fixing holes.
g Remove controller (3).
h Replace in reverse order.

7.5 Pressure Switch Replacement (EVM ONLY).

a Disconnect electrical supply.
b Release the slider latches (30) from the underside of the burner base plate.
c Pull lid (2) apart and upwards from base (1).
d Disconnect both silicone tubes (42 & 43) from pressure switch (noting connection orientation).
e Disconnect three electrical cables from pressure switch (noting connection orientation).

f Remove fixing screws and nuts from the pressure switch bracket and withdraw.

g Remove retaining screws from bracket to pressure switch and remove unit.

h Replace in reverse order.

7.6 Sequence Timer Replacement.

a Disconnect electrical supply.

b Release the slider latches (30) from the underside of the burner base plate.

c Pull lid (2) apart and upwards from base (1).

d Remove controller as described in section 7.4

e Disconnect electrical connection from the timer.

f Remove fixing screws from timer bracket and withdraw.

g Remove timer from the insulation wrap and remove unit.

h Replace in reverse order.

7.7 Electrode Assembly Replacement.

a Disconnect electrical supply.

b Release the slider latches (30) from the underside of the burner base plate.

c Pull lid (2) apart and upwards from base (1).

d Remove fixing screws from timer bracket and withdraw.

e Carefully withdraw electrode assembly from burner - noting electrode orientation.

f Replace in reverse order.

7.8 Injector Replacement.

(See figure 6a)

a Turn off gas and disconnect electrical supply.

b Release the slider latches (30) from the underside of the burner base plate (1).

c Pull lid (2) apart and upwards from base (1).

d Remove fixings screws (37) and air shutter plate (9) from top of burner casting.

e Remove plug (23).
Combustion Chamber Viewing Window Replacement.

- **a** Turn off the system including the vacuum fan.
- **b** Unscrew dome nuts (47) and spring washers (48). Remove sight glass cover (49), gasket (50) and mica window (51).
- **c** Replace in reverse order as shown ensuring components are re-assembled in correct order.

Unscrew brass jet (10) inside mixing chamber using 8mm allen key and withdraw through 1/2in BSP hole.

Replace in reverse order.
8. User & Operating Instructions.

8.1 To Start the Heater

1. Ensure that gas supply is turned on at each burner.
2. Switch on electrical supply to heaters.
3. Ensure that the controls are correctly set i.e.;
 - Clock is correctly set.
 - Heater program is correctly set.
 - Required room temp is correctly set.
4. The vacuum fan will operate and at the same time the red neon lights will illuminate at all burners. After 10 seconds the burners closest to the exhaust fan in each radiant branch will light, with both red and amber neon illuminated. After a further 25 seconds the next burner in line within each radiant branch will light and after a further 25 seconds the end vent burner will light.
5. If the lighting up sequence fails and lockout occurs press the lockout reset button (if available), or switch off the electrical supply and restart after 40 seconds. If lockout occurs three times consecutively switch off and isolate the gas and electricity supplies.

Contact the AmbiRad Service department.

8.2 To Switch Off Heater

1. Switch off electrical supply to the heater. The burner will stop and the fan will shut off.
2. If the heater is to be switched off for periods in excess of one week it is highly recommended that both the gas and the electrical supplies are turned off.

8.3 Routine Maintenance between Service Intervals

After ensuring that the heater is cold and mains electric isolated, cleaning of the reflectors with a soft cloth and a mild detergent (non solvent based cleaners only) in water can be undertaken.

Additional removal of dust from the radiant tubes, burner and heat exchanger can be undertaken.

8.4 Frequency of Servicing

The manufacturer recommends that to ensure continued efficient and safe operation of the appliance, the heater is serviced annually by a competent person e.g. every year in normal working conditions but in exceptional dusty or polluted conditions more frequent servicing may be required.

The manufacturer offers a maintenance service.

Details are available on request.

For Service requirements, please contact AmbiRad.

For further technical and service support visit our Support Information Database at www.s-i-d.co.uk

Note This notice must be fixed alongside the electrical service switch. On some systems only the end vent burner contains a delay timer. In this instance the inline burners will light simultaneously and the end vent burners will light after an 80 seconds delay.