

Heavy oil burners

CODE	MODEL	TYPE
3437785	P200 T/N	467 T80
3437786	P200 T/N	467 T80

TECHNICAL DATA

Thermal power - Output	515 / 2280 kW - 45 / 200 kg/h (See sheet 3)
Operation	1 st stage - 2 nd stage - 3 rd stage
Fuel	Oil with max. viscosity 50mm ² /s (7°E) at 50°C with kit: max. viscosity 500mm ² /s (65°E) at 50°C
Pump	350 kg/h at 25 bar

ELECTRICAL DATA

Motor IE1

Electrical supply	3N ~ 220/380V 60 Hz	
Fan motor	rpm V kW A	3470 220/380 5,5 19,7 - 11,4
Ignition transformer	V1 - V2 I1 - I2	230 V - 2 x 6 kV 2 A - 35 mA
Electrical power consumption	kW max	20

Motor IE2

Electrical supply	3N ~ 220/380V 60 Hz	
Fan motor	rpm V kW A	3568 220/380 5,5 20 - 11,5
Ignition transformer	V1 - V2 I1 - I2	230 V - 2 x 6 kV 2 A - 35 mA
Electrical power consumption	kW max	20

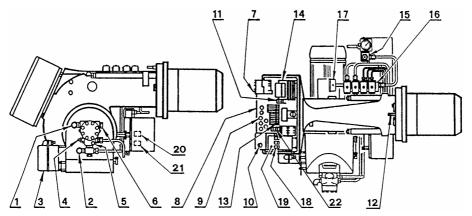
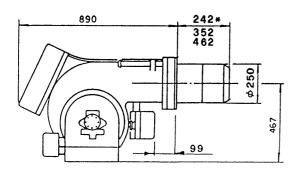
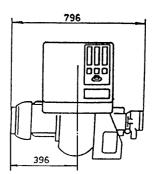



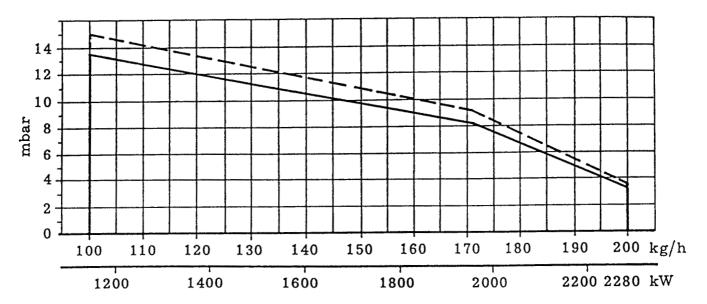
Fig. 1

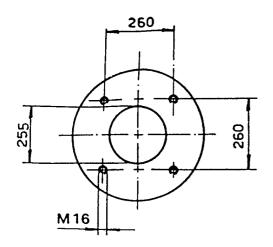
- 1 Suction line
- 2 Return line
- 3 Air shutter opening motor
- 4 Pump pressure adjustment screw
- 5 Manometer plug (G 1/8)
- 6 Vacuometer plug (G 1/2)
- 7 Reset push-button of the motor overload relay
- 8 Electric board
- 9 Cable clamps
- 10 Control box reset push-button and lock-out lamp
- 11 Adjustment thermostat
- 12 Regulating bush for combustion head
- 13 Wiring terminal board
- 14 Ignition transformer
- 15 Filter
- 16 Valves group


- 17 Manometer
- 18 Lamp
- 19 Commutator
- 20 Low limit thermostat
- 21 High limit thermostat
- 22 Timer

Quantity	Accessories
2	Flexibles tubes
2	Nipples
4	Screws
1	Gasket for flange
5	Cable clamps

*It is possible with a spacer, upon request


DIMENSIONS


COMBUSTION CHAMBER PRESSURE - MAXIMUM OUTPUT

(Three nozzles in operation)

Operation field: ---- Safety

When the burner operates with only one or two nozzles, the pressurization conditions are improved and no problems arise.

Boiler front plate drilling Combustion head projection

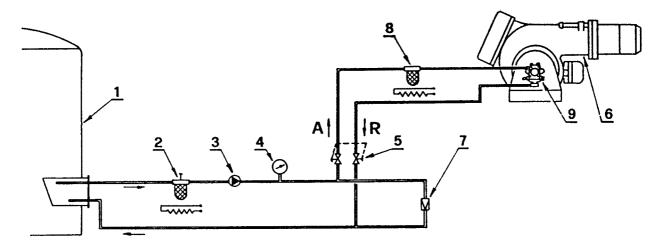
For the combustion head projection carefully follow the boiler manufacturer indications.

A proper protection with refractory material on the combustion head projecting into the combustion chamber shall be made, when boilers with frontal smoke box are used.

OPERATION AND EFFICIENCY OF THE BURNER

		POWER AND OUTPUT				
1 st STAGE	MINIMUM		MAXIMUM			
	kW	kg/h	kW	kg/h		
1 st nozzle: ignition phase	376	33	763	67		
1 st + 2 nd nozzle: intermediate phase	763	67	1516	133		
1 st + 2 nd + 3 rd nozzle: operation phase	1140	100	2279	200		

2 nd STAGE	POWER AND OUTPUT				
	MINIMUM		MAXIMUM		
	kW	kg/h	kW	kg/h	
1 st nozzle: ignition phase	376	33	763	67	
1 st + 2 nd nozzle: 1 st stage of operation	763	67	1516	133	
1 st + 2 nd + 3 rd nozzle: 2 nd stage of operation	1140	100	2279	200	


3 rd STAGE	POWER AND OUTPUT				
	MINIMUM		MAXIMUM		
	kW	kg/h	kW	kg/h	
1 st nozzle: 1 st stage of operation	513	45	763	67	
1 st + 2 nd nozzle: 2 nd stage of operation	1026	90	1516	133	
1 st + 2 nd + 3 rd nozzle: 3 rd stage of operation	1140	100	2279	200	

ACCESSOIRES

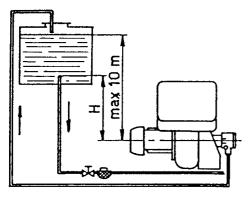
RADIO DISTURBANCE PROTECTION KIT: Code 3010386

If the burner is installed in places particularly subject to radio disturbance (emission of signals exceeding 10 V/m) owing to the presence of an INVERTER, or in applications where the length of the thermostat connections exceeds 20 metres, a protection kit is available as an interface between the control box and the burner.

HEAVY OIL SUPPLY LINE

RING SUPPLY LINE

(for heavy oil with viscosity up to 50°E at 50°C)


- 1 Tank (heated for heavy oil)
- 2 Filter (with resistance for oil > 7°E at 50°C)
- 3 Forwarding pump
- 4 Control manometer
- 5 Shutter valves (in couple) excluding the burner
- 6 Burner (provided for Kit for heavy oil code no. 3000721)
- 7 Pressure adjuster
- 8 Filter (with resistance for oil > 7°E at 50°C)
- 9 Burner pump

WARNING

- The oil could easily flow through the pipes if those are properly seized, protected and heated (by electricity, steam or hot water).
- The forwarding pump capacity should be at the least double of that of the burner pump.
- If several burners are supplied through the same ring supply line, the forwarding pump should have a capacity of approx. 30% more than the sum of the single burners outputs.
- For starting-up: after excluding the burner by the shutter valves (5) let the oil flow into the supply ring up to reach the required circulation; after than open the valves and supply normally the burner.

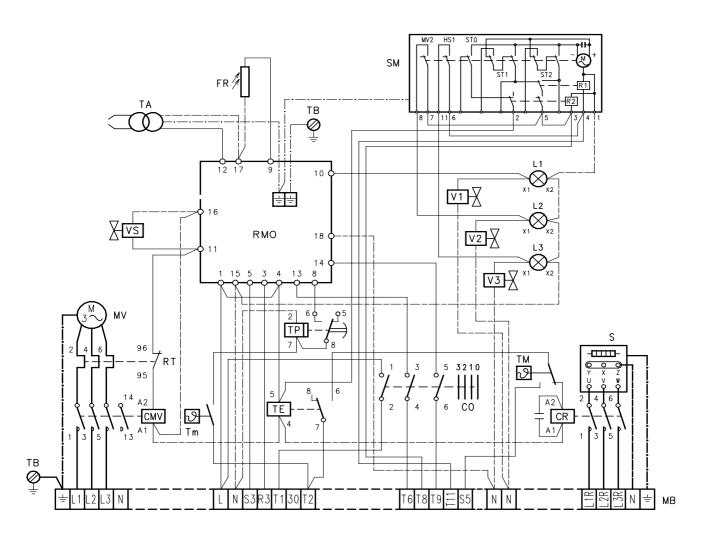
GRAVITY SUPPLY LINE

(only for oil with max. viscosity up to 7°E at 50°C)

Pump priming

Loose the tap of the vacuometer plug (6) (fig. 1) and wait for the oil flow.

Н	= Difference	in	the	pipes	hei	ight
	-					

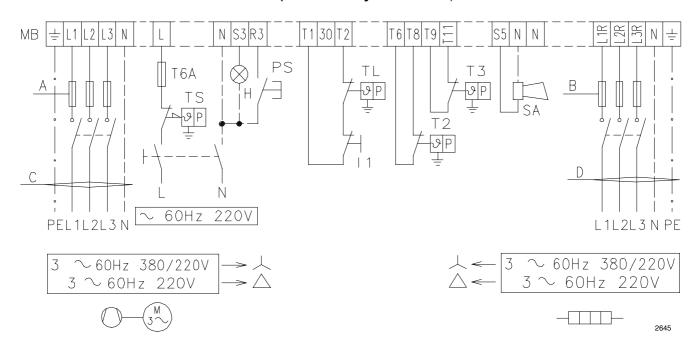

L = Total length of the suction tube

Н	L meters					
meters	ø 1"	ø 11/4"				
0	2	10				
0,5	3	11				
1	4	12				
1,5	5	13				
2	6	14				

Notice: before placing the burner in operation, ensure that the return line is open. Any obstruction may damage the pump seal.

INTERNAL WIRING DIAGRAM

(carried out by the factory)



D2618

LEGEND

CMV CO CR FR MB MV RMO RT S	Fan motor contact maker Commutator Resistor contact maker Photoresistance Burner terminal strip Fan motor Control box Overload Pre-heater tank Air-damper actuator	TB TE TM TP L1 L2 L3 V1 V2	Burner earth Electronic thermostat Maximal thermostat Minimal thermostat Timer Lamps for 1 st stage Lamps for 2 nd stage Lamps for 3 rd stage Oil valves for 1 st stage Oil valves for 2 nd stage
	Air-damper actuator Probe PT100 Ignition transformer	V2 V3 VS	. •

WIRING CONNECTORS TO THE TERMINAL BOARD (carried out by the installer)

	220V	380V
A Ampere	T35	T25
B Ampere	T50	T35
C mm ²	4,0	2,5
D mm ²	10	6

Н	Remote lock-out signal
I1	Optional switch on-off burner

MB Burner terminal strip

PS Reset push - button

SA High temperature oil alarm

TL Limit control device system

TS Safety control device system

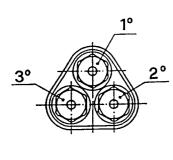
T2 Load control system for 2nd stage

T3 Load control system for 3rd stage

NOTE:

- ➤ Check the lock-out by darkening the photo-cell after removal of the cover. ATTENTION HIGH VOLTAGE.
- ➤ In case of supply 220V without neutral, connect the motor and the pre-heater thank through delta (the "star" connection is the original one, made for 380V).

➤ NOTE

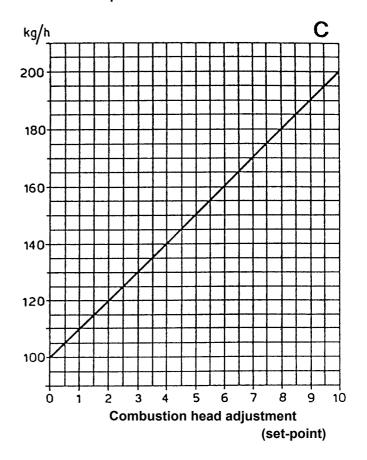

In systems where the run of wiring connecting the thermostat exceeds 20 metres in length, or in places where the burner is subject to particularly disturbing electromagnetic interference (over 10 v/m), you must insert the relay-interface kit item number 3010386.

CHOICE: OF THE NOZZLES - OF THE PUMP PRESSURE - OF THE COMBUSTION HEAD ADJUSTMENT

- First of all state the maximum output required with all three nozzles in operation.
- On the base of the maximum output choose, from table A, three related nozzles. Nozzles: 60° Pump pressure: 25 bar.
- The references of table B should be followed in case of need of:
- modification of the pump pressure in order to vary the output,
- diverse composition of the 3 nozzles group,
- knowledge of the output in 1st and 2nd stage.

SUGGESTED NOZZLES

А


NOZZLES 60° GPH		TOTAL OUTPUT kg/h 1° + 2° + 3°		
1°	2°	3°	25 bar	28 bar
5.00	5, 00	5.00	96	99
5.50	5.50	5.50	105	111
6.00	6.00	6.00	104	120
6.50	6.50	6.50	123	132
7.00	7.00	7.00	132	141
7.50	7.50	7.50	141	150
8.00	8.00	8.00	150	159
8.30	8.30	8.30	156	165
8.50	8.50	8.50	159	171
9.00	9.00	9.00	168	180
9.50	9.50	9.50	177	189
10.0	10.0	10.0	186	198
10.5	10.5	10.5	195	-
10.5	10.5	11.0	199	-

The pump pressure is referred to all three nozzles operating. The pump pressure increases automatically when two nozzles are operating and becomes higher with only one nozzle.

Nozzles delivery Pump pressure

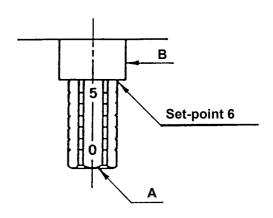
		В
GPH	25 bar kg/h	28 bar kg/h
5.00	32	33
5.50	35	37
6.00	38	40
6.50	41	44
7.00	44	47
7.50	47	50
8.00	50	53
8.30	52	55
8.50	53	57
9.00	56	60
9.50	59	63
10.00	62	66
10.50	65	70
11.00	69	73

Combustion head adjustment Maximum output

Suggested pressure

- Light oil: 25 bar

- Heavy oil: 28 bar (transformation kit)


Rated nozzles deliveries are listed on the table.

A tolerance of $\pm 5\%$ concerns the real delivery against the rated one.

The pump leaves the factory set at 25 bar.

• On the base of the maximum delivery detect, from table C, the combustion head adjustment.

The adjustment should be made by turning the screw **A** till the set-point (see diagram) is on the line with the washer **B**.

AIR SHUTTERS ADJUSTMENTS

The adjustment of the air shutters shall be set each time, with reference to the nozzles deliveries and the combustion chamber pressurization.

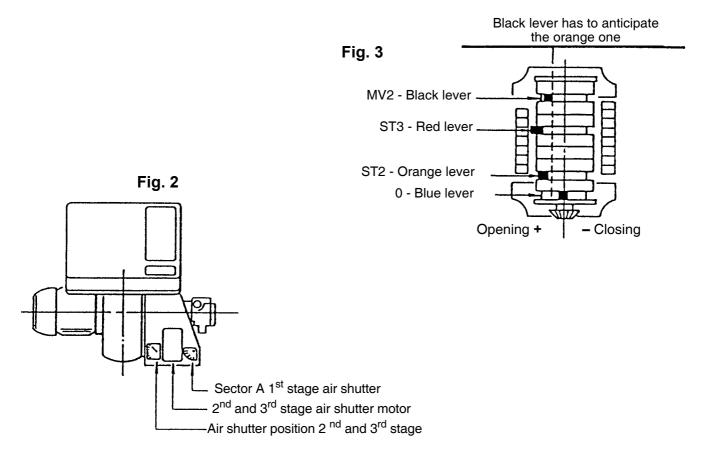


Fig. 2 shows the positioning of the air shutters.

Fig. 3 shows the positioning of the cams of the motor.

Air shutters adjustment

1st stage: manual regulation carried out by acting on the sector **A** (fig. 2).

2nd-3rd stage: carried out by acting on the coloured lever of the motor (fig. 3).

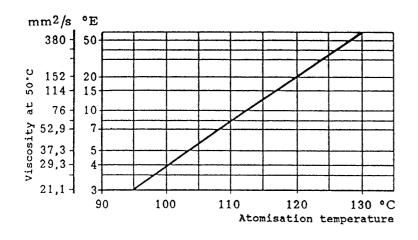
Blue lever: adjustment not necessary.

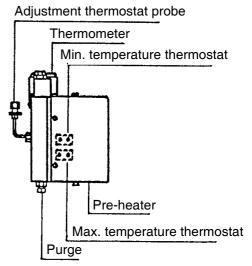
Positioned by the factory on the vertical of the motor axis. It maintains the shutters of 2nd and 3rd stage closed during the 1st stage operation and in the stop periods.

Do not turn clockwise (-) the lever to avoid crawlings of the air shutters, turning the lever anticlockwise (+) the motor will be in different position during the passage from 2nd to 1st stage or during the stop.

Orange lever: for 2nd stage air shutters adjustment, it is adjustable both in opening and in closing position.

Red lever: for 3rd stage air shutters adjustment, it is adjustable both in opening and in closing position.


<u>Black lever</u>: it controls the opening of the 2nd stage oil valve. It has always to anticipate the orange lever.


The control of the 3rd stage valve is automatic through one of the cam next to the red lever.

SPRAY TEMPERATURE ADJUSTMENT

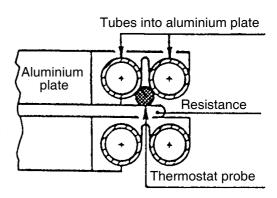
Thermostat for adjustment - maximum value - minimum value

<u>Electronic adjustment thermostat</u> by means of information relayed from a PT100 probe immersed in the oil in the delivery manifold, the thermostat adjusts spray temperature. (The correct conditions for fuel spray are shown in the temperature/viscosity graph below).

Example: fuel oil with 7 °E viscosity at 50 °C is pre-heated to approximately 110 °C.

<u>Note</u> although the temperature set on the thermostat should correspond to the temperature of the fluid, it is good practice to check that the thermometer shows the correct reading once the unit has been in operation for a few minutes.

The LED will illuminate to indicate that the heating resistances are working properly.


<u>Minimum temperature thermostat</u>. In addition to shutting down the burner if the fuel temperature should fall below the critical value for correct combustion, this thermostat also provides a permissive signal at the time of burner start-up. (Factory set at approximately 80°C, adjustable by removing the pre-heater cover and relative plate).

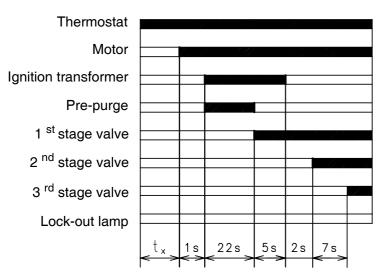
<u>Maximum temperature thermostat.</u> This switches off the resistance when, because of failure of the adjustment thermostat, the temperature of the pre-heater increases to unacceptable levels; a "high temperature" alarm output is provided on the burner terminal strip. (Factory setting is approximately 180°C).

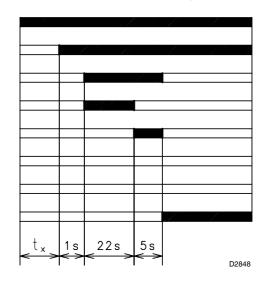
Renewing the minimum and maximum temperature thermostats.

Reposition the probes of the new thermostat, after having first loosened the plate pack securing screws. Make sure that the probe is touching the resistance and the plate pack as shown in the adjacent figure. The same precautions should be taken when renewing the resistances in contact with the thermostat probes.

If the pre-heater should malfunction, use an ohmmeter to check that the resistances located in contact with the temperature probes are not burnt out (reading of approximately 35 Ohm).

Changing the PT100 probe in the oil delivery manifold.

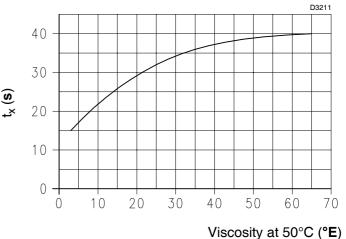

Fit the supplied nut and biconical collar on the new probe, insert a length of approximately 40 mm in the manifold, and secure firmly into place.


At this point, the section remaining outside the manifold can be bent as required, with no risk of damaging the resistance.

CYCLE OF THE BURNER START-UP

Normal

Lock-out because no ignition

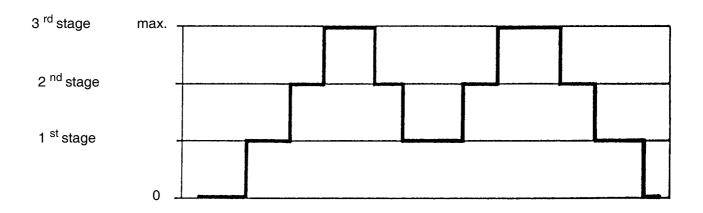


(t_x) Factory setting: 20 s.

This time determines the heavy oil temperature at ignition. It can be adjusted, according to the fuel's viscosity, by the timer 22) (Fig. 1).

The adjacent diagram shows the suggested settings.

$$t_x max = 60 s$$


Motor lock-out

It is caused by the over load relay when overload occurs or no current supply.

Re-set: push button 7 and 10 (fig. 1)

NB.: Periodically clean the filter of the pre-heater tank.

THREE STAGE OPERATION

BURNER START-UP CYCLE DIAGNOSTICS

During start-up, indication is according to the followin table:

COLOUR CODE TABLE				
Sequences				Colour code
Pre-purging				••••••
Ignition phas	e			•0•0•0•0•
Operation, fla	ame ok			
Operating wi	th weak flame signal			
Electrical sup	oply lower than ~ 170V			
Lock-out				
Extraneous li	ght			
Key:	O Off	Yellow	☐ Green	▲ Red

OPERATING FAULT DIAGNOSTICS

The control box has a self-diagnostic system, which easily allows identifying the operating faults (**RED LED** signal).

ITo use this function, wait at least ten seconds from the safety lock out, and then press the reset button for a minimum of 3 seconds.

After releasing the button, the RED LED starts flashing as shown in the diagram below.

RED LED on	Press button		Interval	
wait at least 10 s	for > 3 s	Signal	3 s	Signal
		• • • • •		• • • • •

The pulses of the LED constitute a signal spaced by approximately 3 seconds.

The number of pulses will provide the information on the possible faults, according to the table below:

SIGNAL	PROBABLE CAUSE
2 flashes ● ●	The flame does not stabilise at the end of the safety time: - faulty photocell; - faulty or soiled oil valves; - faulty ignition transformer - poor burner regulation.
3 flashes ● ●	- Not used.
4 flashes ● ● ●	- Light in the chamber before firing.
7 flashes • • • • • • •	Loss of flame during operations: – poor burner regulation; – faulty or soiled oil valves.
8 flashes • • • • • • •	- Faulty thermostat for oil permissive signal; - Heating resistances blown.
10 flashes • • • • • • • • •	Wiring error or internal fault; Presence of electromagnetic disturbance: use the radio disturbance protection kit

RIELLO S.p.A. I-37045 Legnago (VR) Tel.: +39.0442.630111 http:// www.riello.it http:// www.rielloburners.com